Suppr超能文献

具有增强的CO电化学还原性能的PdAg合金的表面结构工程

Surface Structure Engineering of PdAg Alloys with Boosted CO Electrochemical Reduction Performance.

作者信息

Yang Xianghua, Wu Shiqing, Zhang Qian, Qiu Songbai, Wang Yuan, Tan Junjun, Ma Liang, Wang Tiejun, Xia Yongde

机构信息

Guangzhou Key Lab of Clean Transport Energy and Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.

School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

出版信息

Nanomaterials (Basel). 2022 Nov 1;12(21):3860. doi: 10.3390/nano12213860.

Abstract

Converting carbon dioxide into high-value-added formic acid as a basic raw material for the chemical industry via an electrochemical process under ambient conditions not only alleviates greenhouse gas effects but also contributes to effective carbon cycles. Unfortunately, the most commonly used Pd-based catalysts can be easily poisoned by the in situ formed minor byproduct CO during the carbon dioxide reduction reaction (CRR) process. Herein, we report a facile method to synthesize highly uniformed PdAg alloys with tunable morphologies and electrocatalytic performance via a simple liquid synthesis approach. By tuning the molar ratio of the Ag and Pd precursors, the morphologies, composition, and electrocatalytic activities of the obtained materials were well-regulated, which was characterized by TEM, XPS, XRD, as well as electrocatalytic measurements. The CRR results showed that the as-obtained PdAg exhibited the highest performance among the five samples, with a faradic efficient (FE) of 96% for formic acid at -0.2 V (vs. reference hydrogen electrode (RHE)) and superior stability without current density decrease. The enhanced ability to adsorb and activate CO molecules, higher resistance to CO, and a faster electronic transfer speed resulting from the alloyed PdAg nanostructure worked together to make great contributions to the improvement of the CRR performance. These findings may provide a new feasible route toward the rational design and synthesis of alloy catalysts with high stability and selectivity for clean energy storage and conversion in the future.

摘要

在环境条件下通过电化学过程将二氧化碳转化为作为化学工业基础原料的高附加值甲酸,不仅能缓解温室气体效应,还有助于实现有效的碳循环。不幸的是,在二氧化碳还原反应(CRR)过程中,最常用的钯基催化剂很容易被原位生成的少量副产物一氧化碳中毒。在此,我们报道了一种通过简单的液相合成方法合成具有可调形态和电催化性能的高度均匀钯银合金的简便方法。通过调节银和钯前驱体的摩尔比,所得材料的形态、组成和电催化活性得到了很好的调控,通过透射电子显微镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)以及电催化测量对其进行了表征。CRR结果表明,所制备的钯银合金在五个样品中表现出最高的性能,在-0.2 V(相对于参比氢电极(RHE))下对甲酸的法拉第效率(FE)为96%,并且具有优异的稳定性,电流密度没有降低。合金化的钯银纳米结构增强了吸附和活化一氧化碳分子的能力、提高了对一氧化碳的抗性以及加快了电子转移速度,共同为CRR性能的提升做出了巨大贡献。这些发现可能为未来合理设计和合成具有高稳定性和选择性的合金催化剂以用于清洁能源存储和转化提供一条新的可行途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7175/9657775/cc88d532a54c/nanomaterials-12-03860-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验