Jia Lin, Sun Mingzi, Xu Jie, Zhao Xuan, Zhou Rui, Pan Binbin, Wang Lu, Han Na, Huang Bolong, Li Yanguang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
Angew Chem Int Ed Engl. 2021 Sep 27;60(40):21741-21745. doi: 10.1002/anie.202109288. Epub 2021 Aug 31.
Alloying is a general strategy for modulating the electronic structures of catalyst materials. Compared to more common solid-solution alloys, intermetallic alloys feature well-defined atomic arrangements and provide the unique platform for studying the structure-performance correlations. It is, unfortunately, synthetically challenging to prepare the nanostructures of intermetallic alloys for catalysis research. In this contribution, we prepare intermetallic Pd Bi nanocrystals of a uniform size via a facile solvothermal method. These nanocrystals can phase-transform into solid solution alloy via thermal annealing while retaining a similar composition and size. In 0.1 M KHCO aqueous solution, the intermetallic Pd Bi can selectively reduce CO to formate with high selectivity (≈100 %) and stability even at <-0.35 V versus reversible hydrogen electrode, whereas the solid solution alloy has limited formate selectivity of <60 %. Such unique phase-dependence is understood via theoretical simulations showing that the crystallographic ordering of Pd and Bi atoms within intermetallic alloys can suppress CO poisoning and enhance the *OCHO adsorption during electrochemical CO reduction to formate.
合金化是调节催化剂材料电子结构的一种通用策略。与更常见的固溶体合金相比,金属间合金具有明确的原子排列,并为研究结构-性能相关性提供了独特的平台。不幸的是,制备用于催化研究的金属间合金纳米结构在合成上具有挑战性。在本论文中,我们通过一种简便的溶剂热法制备了尺寸均匀的金属间PdBi纳米晶体。这些纳米晶体可以通过热退火相转变为固溶体合金,同时保持相似的组成和尺寸。在0.1 M KHCO水溶液中,金属间PdBi即使在相对于可逆氢电极<-0.35 V时也能以高选择性(≈100%)和稳定性将CO选择性还原为甲酸盐,而固溶体合金的甲酸盐选择性有限,<60%。通过理论模拟可以理解这种独特的相依赖性,结果表明金属间合金中Pd和Bi原子的晶体学有序排列可以抑制CO中毒,并在电化学CO还原为甲酸盐的过程中增强*OCHO吸附。