Suppr超能文献

银纳米颗粒阵列的光学性质:近场增强与光热温度分布

Optical Properties of Ag Nanoparticle Arrays: Near-Field Enhancement and Photo-Thermal Temperature Distribution.

作者信息

Luo Daobin, Hong Pengcheng, Wu Chao, Wu Shengbo, Liu Xiaojing

机构信息

School of Arts and Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China.

Xian Institute of Space Radio Technology, Xi'an 710000, China.

出版信息

Nanomaterials (Basel). 2022 Nov 7;12(21):3924. doi: 10.3390/nano12213924.

Abstract

The near-field and photo-thermal properties of nanostructures have always been the focus of attention due to their wide applications in nanomaterials. In this work, we numerically investigate the near-field and photo-thermal temperature distribution in a nanoparticle array when the scattering light field among particles is considered. 'Hot spots', which represent strong electric field enhancement, were analyzed at the difference of the particle size, particle spacing and the polarization direction of the incident light. Interestingly, it is found that the position of the 'hot spots' does not rotate with the polarization direction of the incident light and always remains in the particle gaps along the line between particle centers. Moreover, the near-field is independent of the polarization in some special areas, and the factor of near-field enhancement keeps constant in these spots when the illumination polarization varies. As for photo-induced heating, our results show that both the temperature of the structure center and maximum temperature increase linearly with the particle number of the array while decreasing with the increase in particle spacing. This work provides some theoretical considerations for the near-field manipulation and photo-thermal applications of nanoarrays.

摘要

由于纳米结构在纳米材料中的广泛应用,其近场和光热特性一直是人们关注的焦点。在这项工作中,我们通过数值模拟研究了考虑粒子间散射光场时纳米粒子阵列中的近场和光热温度分布。分析了代表强电场增强的“热点”在粒子尺寸、粒子间距和入射光偏振方向不同时的情况。有趣的是,发现“热点”的位置并不随入射光的偏振方向旋转,始终位于沿粒子中心连线的粒子间隙中。此外,在一些特殊区域近场与偏振无关,当照明偏振变化时,这些点的近场增强因子保持不变。至于光致加热,我们的结果表明,结构中心温度和最高温度均随阵列粒子数线性增加,而随粒子间距增大而降低。这项工作为纳米阵列的近场操纵和光热应用提供了一些理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1530/9656548/30502f8f0d68/nanomaterials-12-03924-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验