Suppr超能文献

等离子体纳米结构实现光热加热,用于电动操控和粒子分类。

Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.

机构信息

School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University , West Lafayette, Indiana 47907, United States.

出版信息

ACS Nano. 2014 Sep 23;8(9):9035-43. doi: 10.1021/nn502294w. Epub 2014 Sep 2.

Abstract

Plasmonic nanostructures support strong electromagnetic field enhancement or optical "hot spots" that are accompanied by local heat generation. This heating effect is generally seen as an obstacle to stable trapping of particles on a plasmonic substrate. In this work, instead of treating the heating effect as a hindrance, we utilized the collective photoinduced heating of the nanostructure array for high-throughput trapping of particles on a plasmonic nanostructured substrate. The photoinduced heating of the nanostructures is combined with an ac electric field of less than 100 kHz, which results in creation of a strong electrothermal microfluidic flow. This flow rapidly transports suspended particles toward the plasmonic substrate, where they are captured by local electric field effects. This work is envisioned to have application in biosensing and surface-enhanced spectroscopies such as SERS.

摘要

等离子体纳米结构支持强大的电磁场增强或光学“热点”,伴随着局部热产生。这种加热效应通常被视为在等离子体基底上稳定捕获粒子的障碍。在这项工作中,我们没有将加热效应视为障碍,而是利用纳米结构阵列的集体光致加热来实现对等离子体纳米结构基底上粒子的高通量捕获。纳米结构的光致加热与小于 100 kHz 的交流电场相结合,导致产生强大的电热微流。这种流动迅速将悬浮颗粒推向等离子体基底,在那里它们被局部电场效应捕获。这项工作预计将在生物传感和表面增强光谱学(如 SERS)等领域得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验