Ravishankar Ajith P, Vennberg Felix, Anand Srinivasan
Opt Express. 2022 Nov 7;30(23):42512-44524. doi: 10.1364/OE.473358.
Metasurfaces consisting of hybrid metal/dielectric nanostructures carry advantages of both material platforms. The hybrid structures can not only confine electromagnetic fields in subwavelength regions, but they may also lower the absorption losses. Such optical characteristics are difficult to realize in metamaterials with only metal or dielectric structures. Hybrid designs also expand the scope of material choices and the types of optical modes that can be excited in a metasurface, thereby allowing novel light matter interactions. Here, we present a metallo-dielectric hybrid metasurface design consisting of a high-index dielectric (silicon) nanodisk array on top of a metal layer (aluminum) separated by a buffer oxide (silica) layer. The dimensions of Si nanodisks are tuned to support anapole states and the period of the nanodisk array is designed to excite surface plasmon polariton (SPP) at the metal-buffer oxide interface. The physical dimensions of the Si nanodisk and the array periods are optimized to excite the anapole and the SPP at normal incidence of light in the visible-NIR (400-900 nm) wavelength range. Finite difference time domain (FDTD) simulations show that, when the nanodisk grating is placed at a specific height (∼200 nm) from the metal surface, the two modes strongly couple at zero detuning of the resonances. The strong coupling is evident from the avoided crossing of the modes observed in the reflectance spectra and in the spectral profile of light absorption inside the Si nanodisk. A vacuum Rabi splitting of up to ∼ 129 meV is achievable by optimizing the diameters of Si nanodisk and the nanodisk array grating period. The proposed metasurface design is promising to realize open cavity strongly coupled optical systems operating at room temperatures.
由混合金属/电介质纳米结构组成的超表面兼具两种材料平台的优势。这种混合结构不仅能将电磁场限制在亚波长区域,还能降低吸收损耗。这种光学特性在仅由金属或电介质结构组成的超材料中很难实现。混合设计还扩展了材料选择范围以及超表面中可激发的光学模式类型,从而实现新型的光与物质相互作用。在此,我们展示一种金属 - 电介质混合超表面设计,它由高折射率电介质(硅)纳米盘阵列置于金属层(铝)之上构成,中间隔着一层缓冲氧化物(二氧化硅)层。调整硅纳米盘的尺寸以支持无偶极态,设计纳米盘阵列的周期以在金属 - 缓冲氧化物界面激发表面等离激元极化激元(SPP)。优化硅纳米盘的物理尺寸和阵列周期,以便在可见光 - 近红外(400 - 900 nm)波长范围内光垂直入射时激发无偶极态和表面等离激元极化激元。时域有限差分(FDTD)模拟表明,当纳米盘光栅置于距金属表面特定高度(约200 nm)时,这两种模式在共振零失谐时强烈耦合。在反射光谱以及硅纳米盘内部光吸收的光谱轮廓中观察到的模式避免交叉清楚地表明了这种强耦合。通过优化硅纳米盘的直径和纳米盘阵列光栅周期,可实现高达约129 meV的真空拉比分裂。所提出的超表面设计有望实现室温下工作的开放腔强耦合光学系统。