文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PLGA 编织网增强-胶原/壳聚糖支架优化用于全层皮肤缺损的修复。

The optimization of PLGA knitted mesh reinforced-collagen/chitosan scaffold for the healing of full-thickness skin defects.

机构信息

Department of Burns and Wound Repair, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.

Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, People's Republic of China.

出版信息

J Biomed Mater Res B Appl Biomater. 2023 Apr;111(4):763-774. doi: 10.1002/jbm.b.35187. Epub 2022 Nov 11.


DOI:10.1002/jbm.b.35187
PMID:36367718
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10099260/
Abstract

Collagen-based scaffolds reveals promising to repair severe skin defects. The mechanical strength of collagen-based scaffold (CCS) limited its clinical application. Embedding poly(lactic-co-glycolic) acid (PLGA) knitted mesh into CCS improves the mechanical strength of the scaffold. This study was conducted to optimize the configuration of PLGA knitted mesh-collagen-chitosan scaffold (PCCS), and explore possible mechanisms. PLGA knitted mesh was embedded in CCS through freeze-drying method. With the PLGA knitted mesh located at the bottom, middle, or both bottom and top layers of the CCS, three kinds of PCCS were developed. A full-thickness skin wound model was established in Sprague Dawley rats to evaluate the therapeutic effects of different PCCS against CCS. The properties and healing effect of the scaffolds were investigated. Several growth factors and chemotactic factors, that is, VEGF, PDGF, CD31, α-SMA, TGF-β1, and TGF-β3 were analyzed and evaluated. Re-epithelialization and angiogenesis were observed in all animal groups with the treatment of three kinds of PCCS scaffolds and the CCS scaffold (control). The protein and gene expression of VEGF, PDGF, CD31, α-SMA, TGF-β1, and TGF-β3 showed different dynamics at different time points. Based on the healing effects and the expression of growth factors and chemotactic factors, scaffold with the PLGA knitted mesh located at the bottom layer of the CCS demonstrated the best healing effect and accelerated re-epithelialization and angiogenesis among all the scaffolds evaluated. PCCS with the PLGA mesh located in the bottom layer of the scaffold accelerated wound healing by creating a more supportive environment for re-epithelialization and angiogenesis.

摘要

基于胶原的支架显示出有希望修复严重的皮肤缺陷。基于胶原的支架(CCS)的机械强度限制了其临床应用。将聚乳酸-共-羟基乙酸(PLGA)编织网嵌入 CCS 中可提高支架的机械强度。本研究旨在优化 PLGA 编织网-胶原-壳聚糖支架(PCCS)的结构,并探索可能的机制。PLGA 编织网通过冷冻干燥法嵌入 CCS 中。PLGA 编织网位于 CCS 的底部、中间或底部和顶部的两层,制备了三种 PCCS。在 Sprague Dawley 大鼠中建立全层皮肤伤口模型,以评估不同 PCCS 对 CCS 的治疗效果。研究了支架的性能和愈合效果。分析和评估了几种生长因子和趋化因子,即 VEGF、PDGF、CD31、α-SMA、TGF-β1 和 TGF-β3。所有动物组均用三种 PCCS 支架和 CCS 支架(对照)治疗,观察到再上皮化和血管生成。VEGF、PDGF、CD31、α-SMA、TGF-β1 和 TGF-β3 的蛋白和基因表达在不同时间点呈现不同的动态。基于愈合效果和生长因子和趋化因子的表达,PLGA 编织网位于 CCS 底层的支架表现出最佳的愈合效果,并加速了所有评估支架中的再上皮化和血管生成。位于支架底层的 PCCS 中 PLGA 网加速了伤口愈合,为再上皮化和血管生成创造了更有利的环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/11caf6fb6c81/JBM-111-763-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/1900f5e46e0b/JBM-111-763-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/ef84f72b8c3f/JBM-111-763-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/3119149d3aa1/JBM-111-763-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/00dad4ecea10/JBM-111-763-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/bb3ca59b3727/JBM-111-763-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/3ae1087b24c4/JBM-111-763-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/11caf6fb6c81/JBM-111-763-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/1900f5e46e0b/JBM-111-763-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/ef84f72b8c3f/JBM-111-763-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/3119149d3aa1/JBM-111-763-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/00dad4ecea10/JBM-111-763-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/bb3ca59b3727/JBM-111-763-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/3ae1087b24c4/JBM-111-763-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e032/10099260/11caf6fb6c81/JBM-111-763-g002.jpg

相似文献

[1]
The optimization of PLGA knitted mesh reinforced-collagen/chitosan scaffold for the healing of full-thickness skin defects.

J Biomed Mater Res B Appl Biomater. 2023-4

[2]
[Vascularization of poly-lactic-co-glycolic acid knitted mesh/collagen-chitosan hybrid scaffold].

Zhonghua Shao Shang Za Zhi. 2011-8

[3]
The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats.

Acta Biomater. 2013-4-17

[4]
[Design and biological evaluation of poly-lactic-co-glycolic acid (PLGA) mesh/collagen-chitosan hybrid scaffold (CCS) as a dermal substitute].

Zhonghua Shao Shang Za Zhi. 2011-2

[5]
Fabrication and characterization of poly(L-lactide-co-glycolide) knitted mesh-reinforced collagen-chitosan hybrid scaffolds for dermal tissue engineering.

J Mech Behav Biomed Mater. 2012-1-11

[6]
Polyurethane membrane/knitted mesh-reinforced collagen-chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure.

J Mech Behav Biomed Mater. 2016-3

[7]
Three types of dermal grafts in rats: the importance of mechanical property and structural design.

Biomed Eng Online. 2013-12-4

[8]
Protective role of transforming growth factor-Β3 (TGF-Β3) in the formation of radiation-induced capsular contracture around a breast implant: In vivo experimental study.

Int J Pharm. 2024-11-15

[9]
Tissue-engineered urinary bladder wall using PLGA mesh-collagen hybrid scaffolds: a comparison study of collagen sponge and gel as a scaffold.

J Pediatr Surg. 2003-12

[10]
[Fabrication of poly (lactic-co-glycolic acid)/decellularized articular cartilage extracellular matrix scaffold by three-dimensional printing technology and investigating its physicochemical properties].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019-8-15

本文引用的文献

[1]
Chitosan and gelatin biopolymer supplemented with mesenchymal stem cells (Velgraft®) enhanced wound healing in goats (Capra hircus): Involvement of VEGF, TGF and CD31.

J Tissue Viability. 2021-2

[2]
Antibacterial Porous Electrospun Fibers as Skin Scaffolds for Wound Healing Applications.

ACS Omega. 2020-11-12

[3]
Electrospun Polyvinylpyrrolidone-Gelatin and Cellulose Acetate Bi-Layer Scaffold Loaded with Gentamicin as Possible Wound Dressing.

Polymers (Basel). 2020-10-9

[4]
Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering.

Bioact Mater. 2020-9-17

[5]
Collagen extract obtained from Nile tilapia (Oreochromis niloticus L.) skin accelerates wound healing in rat model via up regulating VEGF, bFGF, and α-SMA genes expression.

BMC Vet Res. 2020-9-24

[6]
Scaffolds for Wound Healing Applications.

Polymers (Basel). 2020-9-3

[7]
Artificial dermal substitutes for tissue regeneration: comparison of the clinical outcomes and histological findings of two templates.

J Int Med Res. 2020-8

[8]
From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine.

Mar Drugs. 2020-8-6

[9]
Vascularization is the next challenge for skin tissue engineering as a solution for burn management.

Burns Trauma. 2020-8-3

[10]
Fabrication and Characterization of Hydrogels Based on Gelatinised Collagen with Potential Application in Tissue Engineering.

Polymers (Basel). 2020-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索