Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.
Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan 48105, United States.
J Proteome Res. 2022 Dec 2;21(12):2936-2946. doi: 10.1021/acs.jproteome.2c00371. Epub 2022 Nov 11.
Untargeted liquid chromatography-mass spectrometry metabolomics studies are typically performed under roughly identical experimental settings. Measurements acquired with different LC-MS protocols or following extended time intervals harbor significant variation in retention times and spectral abundances due to altered chromatographic, spectrometric, and other factors, raising many data analysis challenges. We developed a computational workflow for merging and harmonizing metabolomics data acquired under disparate LC-MS conditions. Plasma metabolite profiles were collected from two sets of maternal subjects three years apart using distinct instruments and LC-MS procedures. Metabolomics features were aligned using to generate lists of compounds detected across all experimental batches. We applied data set-specific normalization methods to remove interbatch and interexperimental variation in spectral intensities, enabling statistical analysis on the assembled data matrix. Bioinformatics analyses revealed large-scale metabolic changes in maternal plasma between the first and third trimesters of pregnancy and between maternal plasma and umbilical cord blood. We observed increases in steroid hormones and free fatty acids from the first trimester to term of gestation, along with decreases in amino acids coupled to increased levels in cord blood. This work demonstrates the viability of integrating nonidentically acquired LC-MS metabolomics data and its utility in unconventional metabolomics study designs.
非靶向液相色谱-质谱代谢组学研究通常在大致相同的实验条件下进行。由于色谱、光谱和其他因素的改变,使用不同的 LC-MS 方案或在延长的时间间隔后获得的测量值在保留时间和光谱丰度方面存在显著差异,这给数据分析带来了许多挑战。我们开发了一种计算工作流程,用于合并和协调在不同 LC-MS 条件下获得的代谢组学数据。使用不同的仪器和 LC-MS 程序,从两组三年前的母体受试者中收集血浆代谢物图谱。使用 对齐代谢组学特征,生成在所有实验批次中检测到的化合物列表。我们应用数据集特定的归一化方法来消除光谱强度的批次间和实验间变化,从而能够对组装的数据矩阵进行统计分析。生物信息学分析揭示了母体血浆在妊娠第一和第三 trimester 以及母体血浆和脐血之间的大规模代谢变化。我们观察到从第一 trimester 到足月妊娠类固醇激素和游离脂肪酸的增加,同时与血液中氨基酸的增加相关联。这项工作证明了整合非相同采集的 LC-MS 代谢组学数据的可行性,以及它在非常规代谢组学研究设计中的实用性。