Suppr超能文献

对来自不同批次的母体妊娠样本的代谢组学研究进行对齐和分析。

Alignment and Analysis of a Disparately Acquired Multibatch Metabolomics Study of Maternal Pregnancy Samples.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.

Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan 48105, United States.

出版信息

J Proteome Res. 2022 Dec 2;21(12):2936-2946. doi: 10.1021/acs.jproteome.2c00371. Epub 2022 Nov 11.

Abstract

Untargeted liquid chromatography-mass spectrometry metabolomics studies are typically performed under roughly identical experimental settings. Measurements acquired with different LC-MS protocols or following extended time intervals harbor significant variation in retention times and spectral abundances due to altered chromatographic, spectrometric, and other factors, raising many data analysis challenges. We developed a computational workflow for merging and harmonizing metabolomics data acquired under disparate LC-MS conditions. Plasma metabolite profiles were collected from two sets of maternal subjects three years apart using distinct instruments and LC-MS procedures. Metabolomics features were aligned using to generate lists of compounds detected across all experimental batches. We applied data set-specific normalization methods to remove interbatch and interexperimental variation in spectral intensities, enabling statistical analysis on the assembled data matrix. Bioinformatics analyses revealed large-scale metabolic changes in maternal plasma between the first and third trimesters of pregnancy and between maternal plasma and umbilical cord blood. We observed increases in steroid hormones and free fatty acids from the first trimester to term of gestation, along with decreases in amino acids coupled to increased levels in cord blood. This work demonstrates the viability of integrating nonidentically acquired LC-MS metabolomics data and its utility in unconventional metabolomics study designs.

摘要

非靶向液相色谱-质谱代谢组学研究通常在大致相同的实验条件下进行。由于色谱、光谱和其他因素的改变,使用不同的 LC-MS 方案或在延长的时间间隔后获得的测量值在保留时间和光谱丰度方面存在显著差异,这给数据分析带来了许多挑战。我们开发了一种计算工作流程,用于合并和协调在不同 LC-MS 条件下获得的代谢组学数据。使用不同的仪器和 LC-MS 程序,从两组三年前的母体受试者中收集血浆代谢物图谱。使用 对齐代谢组学特征,生成在所有实验批次中检测到的化合物列表。我们应用数据集特定的归一化方法来消除光谱强度的批次间和实验间变化,从而能够对组装的数据矩阵进行统计分析。生物信息学分析揭示了母体血浆在妊娠第一和第三 trimester 以及母体血浆和脐血之间的大规模代谢变化。我们观察到从第一 trimester 到足月妊娠类固醇激素和游离脂肪酸的增加,同时与血液中氨基酸的增加相关联。这项工作证明了整合非相同采集的 LC-MS 代谢组学数据的可行性,以及它在非常规代谢组学研究设计中的实用性。

相似文献

1
Alignment and Analysis of a Disparately Acquired Multibatch Metabolomics Study of Maternal Pregnancy Samples.
J Proteome Res. 2022 Dec 2;21(12):2936-2946. doi: 10.1021/acs.jproteome.2c00371. Epub 2022 Nov 11.
2
: Paired Untargeted LC-HRMS Metabolomics Feature Matching and Concatenation of Disparately Acquired Data Sets.
Anal Chem. 2021 Mar 30;93(12):5028-5036. doi: 10.1021/acs.analchem.0c03693. Epub 2021 Mar 16.
3
metabCombiner 2.0: Disparate Multi-Dataset Feature Alignment for LC-MS Metabolomics.
Metabolites. 2024 Feb 15;14(2):125. doi: 10.3390/metabo14020125.
4
Non-targeted metabolomics and lipidomics LC-MS data from maternal plasma of 180 healthy pregnant women.
Gigascience. 2015 Apr 9;4:16. doi: 10.1186/s13742-015-0054-9. eCollection 2015.
5
MS and LC libraries for untargeted metabolomics: Enhancing method development and identification confidence.
J Chromatogr B Analyt Technol Biomed Life Sci. 2020 May 15;1145:122105. doi: 10.1016/j.jchromb.2020.122105. Epub 2020 Apr 4.
7
Cord blood metabolomic profiling in intrauterine growth restriction.
Anal Bioanal Chem. 2012 Jan;402(3):1109-21. doi: 10.1007/s00216-011-5540-z. Epub 2011 Nov 19.

引用本文的文献

1
Early pregnancy serum PFAS are associated with alterations in the maternal lipidome.
Environ Res. 2024 Dec 15;263(Pt 3):120183. doi: 10.1016/j.envres.2024.120183. Epub 2024 Oct 18.

本文引用的文献

1
Maternal and neonatal one-carbon metabolites and the epigenome-wide infant response.
J Nutr Biochem. 2022 Mar;101:108938. doi: 10.1016/j.jnutbio.2022.108938. Epub 2022 Jan 10.
2
A New Pipeline for the Normalization and Pooling of Metabolomics Data.
Metabolites. 2021 Sep 17;11(9):631. doi: 10.3390/metabo11090631.
3
Amanida: an R package for meta-analysis of metabolomics non-integral data.
Bioinformatics. 2022 Jan 3;38(2):583-585. doi: 10.1093/bioinformatics/btab591.
4
Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: Meta-analysis of profiling metabolomics studies.
Nutr Metab Cardiovasc Dis. 2021 Jul 22;31(8):2253-2272. doi: 10.1016/j.numecd.2021.04.021. Epub 2021 May 4.
5
: Paired Untargeted LC-HRMS Metabolomics Feature Matching and Concatenation of Disparately Acquired Data Sets.
Anal Chem. 2021 Mar 30;93(12):5028-5036. doi: 10.1021/acs.analchem.0c03693. Epub 2021 Mar 16.
6
Interlaboratory Comparison of Untargeted Mass Spectrometry Data Uncovers Underlying Causes for Variability.
J Nat Prod. 2021 Mar 26;84(3):824-835. doi: 10.1021/acs.jnatprod.0c01376. Epub 2021 Mar 5.
7
Comprehensive Meta-Analysis of COVID-19 Global Metabolomics Datasets.
Metabolites. 2021 Jan 9;11(1):44. doi: 10.3390/metabo11010044.
8
Association of Maternal-Neonatal Steroids With Early Pregnancy Endocrine Disrupting Chemicals and Pregnancy Outcomes.
J Clin Endocrinol Metab. 2021 Mar 8;106(3):665-687. doi: 10.1210/clinem/dgaa909.
9
Application of Differential Network Enrichment Analysis for Deciphering Metabolic Alterations.
Metabolites. 2020 Nov 24;10(12):479. doi: 10.3390/metabo10120479.
10
Influence of labor on direct and indirect determinants of placental 11beta-hydroxysteroid dehydrogenase activity.
Arch Gynecol Obstet. 2021 Feb;303(2):401-408. doi: 10.1007/s00404-020-05755-4. Epub 2020 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验