Suppr超能文献

利用可解释的机器学习进行折纸的整体反向设计。

Harnessing interpretable machine learning for holistic inverse design of origami.

机构信息

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA.

Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA.

出版信息

Sci Rep. 2022 Nov 11;12(1):19277. doi: 10.1038/s41598-022-23875-6.

Abstract

This work harnesses interpretable machine learning methods to address the challenging inverse design problem of origami-inspired systems. We established a work flow based on decision tree-random forest method to fit origami databases, containing both design features and functional performance, and to generate human-understandable decision rules for the inverse design of functional origami. First, the tree method is unique because it can handle complex interactions between categorical features and continuous features, allowing it to compare different origami patterns for a design. Second, this interpretable method can tackle multi-objective problems for designing functional origami with multiple and multi-physical performance targets. Finally, the method can extend existing shape-fitting algorithms for origami to consider non-geometrical performance. The proposed framework enables holistic inverse design of origami, considering both shape and function, to build novel reconfigurable structures for various applications such as metamaterials, deployable structures, soft robots, biomedical devices, and many more.

摘要

这项工作利用可解释的机器学习方法来解决折纸启发系统的具有挑战性的逆向设计问题。我们建立了一个基于决策树-随机森林方法的工作流程,以拟合折纸数据库,其中包含设计特征和功能性能,并为功能折纸的逆向设计生成人类可理解的决策规则。首先,树方法是独特的,因为它可以处理类别特征和连续特征之间的复杂交互,允许它比较不同的折纸模式进行设计。其次,这种可解释的方法可以解决具有多个和多物理性能目标的功能折纸设计的多目标问题。最后,该方法可以扩展现有的折纸形状拟合算法,以考虑非几何性能。所提出的框架能够对折纸进行整体的逆向设计,同时考虑形状和功能,为各种应用(如超材料、可展开结构、软机器人、生物医学设备等)构建新型可重构结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/606a/9652322/8fd1a1d987ed/41598_2022_23875_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验