Liu Qingkun, Wang Wei, Reynolds Michael F, Cao Michael C, Miskin Marc Z, Arias Tomas A, Muller David A, McEuen Paul L, Cohen Itai
Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA.
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
Sci Robot. 2021 Mar 17;6(52). doi: 10.1126/scirobotics.abe6663.
Shape-memory actuators allow machines ranging from robots to medical implants to hold their form without continuous power, a feature especially advantageous for situations where these devices are untethered and power is limited. Although previous work has demonstrated shape-memory actuators using polymers, alloys, and ceramics, the need for micrometer-scale electro-shape-memory actuators remains largely unmet, especially ones that can be driven by standard electronics (1 volt). Here, we report on a new class of fast, high-curvature, low-voltage, reconfigurable, micrometer-scale shape-memory actuators. They function by the electrochemical oxidation/reduction of a platinum surface, creating a strain in the oxidized layer that causes bending. They bend to the smallest radius of curvature of any electrically controlled microactuator (500 nanometers), are fast (<100-millisecond operation), and operate inside the electrochemical window of water, avoiding bubble generation associated with oxygen evolution. We demonstrate that these shape-memory actuators can be used to create basic electrically reconfigurable microscale robot elements including actuating surfaces, origami-based three-dimensional shapes, morphing metamaterials, and mechanical memory elements. Our shape-memory actuators have the potential to enable the realization of adaptive microscale structures, bio-implantable devices, and microscopic robots.
形状记忆致动器使从机器人到医疗植入物等各种机器能够在无需持续供电的情况下保持其形状,这一特性在这些设备不受束缚且电力有限的情况下尤为有利。尽管先前的工作已经展示了使用聚合物、合金和陶瓷的形状记忆致动器,但对微米级电形状记忆致动器的需求在很大程度上仍未得到满足,尤其是那些可以由标准电子设备(约1伏)驱动的致动器。在此,我们报告了一类新型的快速、高曲率、低电压、可重构的微米级形状记忆致动器。它们通过铂表面的电化学氧化/还原起作用,在氧化层中产生应变从而导致弯曲。它们能弯曲到任何电控微致动器中最小的曲率半径(约500纳米),速度快(操作时间<100毫秒),并且在水的电化学窗口内运行,避免了与析氧相关的气泡产生。我们证明,这些形状记忆致动器可用于创建基本的电可重构微尺度机器人元件,包括致动表面、基于折纸的三维形状、变形超材料和机械记忆元件。我们的形状记忆致动器有潜力实现自适应微尺度结构、生物可植入设备和微观机器人。