Suppr超能文献

多厂商、多站点研究中 T 和 T 定量的可重复性。

Reproducibility of T and T quantification in a multi-vendor multi-site study.

机构信息

Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA.

Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, OH, USA.

出版信息

Osteoarthritis Cartilage. 2023 Feb;31(2):249-257. doi: 10.1016/j.joca.2022.10.017. Epub 2022 Nov 10.

Abstract

OBJECTIVE

To evaluate the multi-vendor multi-site reproducibility of two-dimensional (2D) multi-echo spin-echo (MESE) T mapping (product sequences); and to evaluate the longitudinal reproducibility of three-dimensional (3D) magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (MAPSS) T and T mapping (research sequences), and 2D MESE T mapping, separated by 6 months, in a multi-vendor multi-site setting.

METHODS

Phantoms and volunteers (n = 5 from each site, n = 20 in total) were scanned on four 3 T magnetic resonance (MR) systems from four sites and three vendors (Siemens, General Electric, and Phillips). Two traveling volunteers (3 knees) scanned at all 4 sites at baseline and 6-month follow-up. Data was transferred to one site for centralized processing. Coefficients of variation (CVs) were calculated to evaluate reproducibility.

RESULTS

For baseline 2D MESE T measures, average CV were 0.37-2.45% (intra-site) and 5.96% (inter-site) for phantoms, and 3.15-8.49% (intra-site) and 14.16% (inter-site) for volunteers. For longitudinal phantom data, intra-site CVs were 1.42-3.48% for 3D MAPSS T, 1.77-3.56% for 3D MAPSS T, and 1.02-2.54% for 2D MESE T. For the longitudinal volunteer data, the intra-site CVs were 2.60-4.86% for 3D MAPSS T, 3.33-7.25% for 3D MAPSS T, and 3.11-8.77% for 2D MESE T.

CONCLUSION

This study demonstrated excellent intra-site reproducibility of 2D MESE T imaging, while its inter-site variation was slightly higher than 3D MAPSS T imaging (10.06% as previously reported). This study also showed excellent reproducibility of longitudinal T and T cartilage quantification, in a multi-vendor multi-site setting for both product 2D MESE T and 3D MAPSS T/T research sequences.

摘要

目的

评估两种二维(2D)多回波自旋回波(MESE)T 映射(商品序列)的多厂家多部位的可重复性;并评估三种容积磁化准备角调制分区 K 空间扰相梯度回波快照(MAPSS)T 和 T 映射(研究序列),以及 2D MESE T 映射在多厂家多部位设置中的 6 个月的纵向可重复性。

方法

对来自四个厂家的四个 3T 磁共振(MR)系统的 5 名志愿者(每个部位各 5 名,总计 20 名)进行了扫描。两名流动志愿者(3 个膝关节)在基线和 6 个月随访时在所有 4 个部位进行了扫描。将数据传输到一个部位进行集中处理。计算变异系数(CV)来评估可重复性。

结果

对于基线 2D MESE T 测量,对于体模,平均 CV 分别为 0.37-2.45%(同一部位)和 5.96%(不同部位),志愿者分别为 3.15-8.49%(同一部位)和 14.16%(不同部位)。对于纵向体模数据,3D MAPSS T 的同一部位 CV 为 1.42-3.48%,3D MAPSS T 的同一部位 CV 为 1.77-3.56%,2D MESE T 的同一部位 CV 为 1.02-2.54%。对于纵向志愿者数据,3D MAPSS T 的同一部位 CV 为 2.60-4.86%,3D MAPSS T 的同一部位 CV 为 3.33-7.25%,2D MESE T 的同一部位 CV 为 3.11-8.77%。

结论

本研究证明了 2D MESE T 成像的优异的同一部位可重复性,而其不同部位的差异略高于 3D MAPSS T 成像(之前报道为 10.06%)。本研究还表明,在多厂家多部位设置中,对于商品 2D MESE T 和 3D MAPSS T/T 研究序列,纵向 T 和 T 软骨定量具有出色的可重复性。

相似文献

1
Reproducibility of T and T quantification in a multi-vendor multi-site study.
Osteoarthritis Cartilage. 2023 Feb;31(2):249-257. doi: 10.1016/j.joca.2022.10.017. Epub 2022 Nov 10.
2
Multi-vendor multi-site T and T quantification of knee cartilage.
Osteoarthritis Cartilage. 2020 Dec;28(12):1539-1550. doi: 10.1016/j.joca.2020.07.005. Epub 2020 Jul 30.
3
T2 Relaxation time quantitation differs between pulse sequences in articular cartilage.
J Magn Reson Imaging. 2015 Jul;42(1):105-13. doi: 10.1002/jmri.24757. Epub 2014 Sep 22.
4
Cartilage T1ρ and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites.
Osteoarthritis Cartilage. 2015 Dec;23(12):2214-2223. doi: 10.1016/j.joca.2015.07.006. Epub 2015 Jul 15.
8
3D T1rho sequences with FASE, UTE, and MAPSS acquisitions for knee evaluation.
Jpn J Radiol. 2023 Nov;41(11):1308-1315. doi: 10.1007/s11604-023-01453-8. Epub 2023 May 29.
9
Three-Dimensional GRE T mapping of the brain using tailored variable flip-angle scheduling.
Magn Reson Med. 2020 Sep;84(3):1235-1249. doi: 10.1002/mrm.28198. Epub 2020 Feb 12.
10
Repeatability of Quantitative Knee Cartilage T, T, and T Mapping With 3D-MRI Fingerprinting.
J Magn Reson Imaging. 2024 Aug;60(2):688-699. doi: 10.1002/jmri.29068. Epub 2023 Oct 26.

引用本文的文献

3
Multiparametric quantitative magnetic resonance imaging of skeletal muscle in CKD.
Am J Physiol Renal Physiol. 2025 Jul 1;329(1):F99-F111. doi: 10.1152/ajprenal.00254.2024. Epub 2025 May 27.
4
Transformative approaches for effective clinical trials to reduce the disease burden of osteoarthritis.
Semin Arthritis Rheum. 2025 Apr;71:152652. doi: 10.1016/j.semarthrit.2025.152652. Epub 2025 Feb 3.
5
Novel spin-lock time sampling strategies for improved reproducibility in quantitative T1ρ mapping.
NMR Biomed. 2024 Dec;37(12):e5244. doi: 10.1002/nbm.5244. Epub 2024 Aug 17.
6
Cartilage compositional MRI-a narrative review of technical development and clinical applications over the past three decades.
Skeletal Radiol. 2024 Sep;53(9):1761-1781. doi: 10.1007/s00256-024-04734-z. Epub 2024 Jul 9.

本文引用的文献

1
The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis.
Osteoarthritis Cartilage. 2022 May;30(5):650-662. doi: 10.1016/j.joca.2021.10.016. Epub 2021 Nov 23.
2
T mapping of healthy knee cartilage: multicenter multivendor reproducibility.
Quant Imaging Med Surg. 2021 Apr;11(4):1247-1255. doi: 10.21037/qims-20-674.
3
Multi-vendor multi-site T and T quantification of knee cartilage.
Osteoarthritis Cartilage. 2020 Dec;28(12):1539-1550. doi: 10.1016/j.joca.2020.07.005. Epub 2020 Jul 30.
4
State of the Art: Imaging of Osteoarthritis-Revisited 2020.
Radiology. 2020 Jul;296(1):5-21. doi: 10.1148/radiol.2020192498. Epub 2020 May 19.
5
MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis.
BMC Musculoskelet Disord. 2019 May 1;20(1):182. doi: 10.1186/s12891-019-2547-7.
6
Activities of daily living influence tibial cartilage T1rho relaxation times.
J Biomech. 2019 Jan 3;82:228-233. doi: 10.1016/j.jbiomech.2018.10.029. Epub 2018 Nov 1.
7
Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis.
Osteoarthritis Cartilage. 2018 Sep;26(9):1140-1152. doi: 10.1016/j.joca.2017.11.018. Epub 2018 Mar 14.
8
T1ρ Magnetic Resonance Imaging to Assess Cartilage Damage After Primary Shoulder Dislocation.
Am J Sports Med. 2016 Nov;44(11):2800-2806. doi: 10.1177/0363546516655338. Epub 2016 Jul 27.
9
Cartilage T1ρ and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites.
Osteoarthritis Cartilage. 2015 Dec;23(12):2214-2223. doi: 10.1016/j.joca.2015.07.006. Epub 2015 Jul 15.
10
Quantitative MRI of articular cartilage and its clinical applications.
J Magn Reson Imaging. 2013 Nov;38(5):991-1008. doi: 10.1002/jmri.24313. Epub 2013 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验