Department of Statistics and Data Sciences, Smith Collegegrid.263724.6, Northampton, Massachusetts, USA.
Department of Mathematical Sciences, Smith Collegegrid.263724.6, Northampton, Massachusetts, USA.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0143722. doi: 10.1128/aem.01437-22. Epub 2022 Nov 14.
Over the last 4 decades, the rate of discovery of novel antibiotics has decreased drastically, ending the era of fortuitous antibiotic discovery. A better understanding of the biology of bacteriogenic toxins potentially helps to prospect for new antibiotics. To initiate this line of research, we quantified antagonists from two different sites at two different depths of soil and found the relative number of antagonists to correlate with the bacterial load and carbon-to-nitrogen (C/N) ratio of the soil. Consecutive studies show the importance of antagonist interactions between soil isolates and the lack of a predicted role for nutrient availability and, therefore, support an role in offense for the production of toxins in environments of high bacterial loads. In addition, the production of extracellular DNAses (exDNases) and the ability to antagonize correlate strongly. Using an -developed probabilistic cellular automaton model, we studied the consequences of exDNase production for both coexistence and diversity within a dynamic equilibrium. Our model demonstrates that exDNase-producing isolates involved in amensal interactions act to stabilize a community, leading to increased coexistence within a competitor-sensing interference competition environment. Our results signify that the environmental and biological cues that control natural-product formation are important for understanding antagonism and community dynamics, structure, and function, permitting the development of directed searches and the use of these insights for drug discovery. Ever since the first observation of antagonism by microorganisms by Ernest Duchesne (E. Duchesne, Contribution à l'étude de la concurrence vitale chez les microorganisms. Antagonism entre les moisissures et les microbes, These pour obtenir le grade de docteur en medicine, Lyon, France, 1897), many scientists successfully identified and applied bacteriogenic bioactive compounds from soils to cure infection. Unfortunately, overuse of antibiotics and the emergence of clinical antibiotic resistance, combined with a lack of discovery, have hampered our ability to combat infections. A deeper understanding of the biology of toxins and the cues leading to their production may elevate the success rate of the much-needed discovery of novel antibiotics. We initiated this line of research and discovered that bacterial reciprocal antagonism is associated with exDNase production in isolates from environments with high bacterial loads, while diversity may increase in environments of lower bacterial loads.
在过去的 40 年里,新型抗生素的发现率急剧下降,结束了偶然发现抗生素的时代。更好地了解细菌毒素的生物学特性有助于寻找新的抗生素。为了开展这一研究,我们从土壤的两个不同地点和两个不同深度量化了拮抗剂,并发现拮抗剂的相对数量与土壤中的细菌负荷和碳氮比(C/N)相关。后续研究表明,土壤分离物之间拮抗剂相互作用的重要性,以及营养物质可用性的预测作用的缺乏,因此支持了在高细菌负荷环境中产生毒素的进攻作用。此外,细胞外 DNA 酶(exDNase)的产生和拮抗作用密切相关。我们使用一种 - 开发的概率细胞自动机模型,研究了 exDNase 产生对动态平衡中共存和多样性的影响。我们的模型表明,参与共生相互作用的 exDNase 产生分离物作用于稳定群落,导致在竞争感应干扰竞争环境中增加共存。我们的结果表明,控制天然产物形成的环境和生物学线索对于理解拮抗作用以及群落动态、结构和功能非常重要,这允许进行有针对性的搜索,并利用这些见解进行药物发现。自 Ernest Duchesne(E. Duchesne,微生物竞争生命的初步观察。霉菌与微生物之间的拮抗作用,里昂,法国,1897 年)首次观察到微生物的拮抗作用以来,许多科学家成功地从土壤中识别并应用了细菌产生的生物活性化合物来治疗感染。不幸的是,抗生素的过度使用和临床抗生素耐药性的出现,加上发现的缺乏,阻碍了我们对抗感染的能力。更深入地了解毒素的生物学特性以及导致其产生的线索可能会提高急需发现新型抗生素的成功率。我们开展了这项研究,发现细菌相互拮抗与高细菌负荷环境中分离物的 exDNase 产生有关,而在细菌负荷较低的环境中,多样性可能会增加。