Suppr超能文献

基于多模态深度学习模型的中医体质分类。

Classifying Chinese Medicine Constitution Using Multimodal Deep-Learning Model.

机构信息

School of Communication & Information Engineering, Shanghai University, Shanghai, 200444, China.

School of Life Science, Shanghai University, Shanghai, 200444, China.

出版信息

Chin J Integr Med. 2024 Feb;30(2):163-170. doi: 10.1007/s11655-022-3541-8. Epub 2022 Nov 14.

Abstract

OBJECTIVE

To develop a multimodal deep-learning model for classifying Chinese medicine constitution, i.e., the balanced and unbalanced constitutions, based on inspection of tongue and face images, pulse waves from palpation, and health information from a total of 540 subjects.

METHODS

This study data consisted of tongue and face images, pulse waves obtained by palpation, and health information, including personal information, life habits, medical history, and current symptoms, from 540 subjects (202 males and 338 females). Convolutional neural networks, recurrent neural networks, and fully connected neural networks were used to extract deep features from the data. Feature fusion and decision fusion models were constructed for the multimodal data.

RESULTS

The optimal models for tongue and face images, pulse waves and health information were ResNet18, Gate Recurrent Unit, and entity embedding, respectively. Feature fusion was superior to decision fusion. The multimodal analysis revealed that multimodal data compensated for the loss of information from a single mode, resulting in improved classification performance.

CONCLUSIONS

Multimodal data fusion can supplement single model information and improve classification performance. Our research underscores the effectiveness of multimodal deep learning technology to identify body constitution for modernizing and improving the intelligent application of Chinese medicine.

摘要

目的

基于 540 名受试者的舌象和面相图像、脉象和健康信息,开发一种用于中医体质分类(即平衡体质和不平衡体质)的多模态深度学习模型。

方法

本研究数据包括舌象和面相图像、脉象以及健康信息,包括个人信息、生活习惯、病史和当前症状,来源于 540 名受试者(男性 202 名,女性 338 名)。使用卷积神经网络、递归神经网络和全连接神经网络从数据中提取深度特征。为多模态数据构建了特征融合和决策融合模型。

结果

舌象和面相图像、脉象和健康信息的最优模型分别为 ResNet18、门控循环单元和实体嵌入。特征融合优于决策融合。多模态分析表明,多模态数据弥补了单一模态信息的损失,从而提高了分类性能。

结论

多模态数据融合可以补充单一模型信息,提高分类性能。我们的研究强调了多模态深度学习技术在识别体质方面的有效性,为中医的现代化和智能应用提供了改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验