Suppr超能文献

玻色子手性超流体中的本征反常霍尔效应。

Intrinsic Anomalous Hall Effect in a Bosonic Chiral Superfluid.

作者信息

Huang Guan-Hua, Xu Zhi-Fang, Wu Zhigang

机构信息

Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.

Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

出版信息

Phys Rev Lett. 2022 Oct 28;129(18):185301. doi: 10.1103/PhysRevLett.129.185301.

Abstract

The anomalous Hall effect has had a profound influence on the understanding of many electronic topological materials but is much less studied in their bosonic counterparts. We predict that an intrinsic anomalous Hall effect exists in a recently realized bosonic chiral superfluid, a p-orbital Bose-Einstein condensate in a 2D hexagonal boron nitride optical lattice [Wang et al., Nature (London) 596, 227 (2021)NATUAS0028-083610.1038/s41586-021-03702-0]. We evaluate the frequency-dependent Hall conductivity within a multi-orbital Bose-Hubbard model that accurately captures the real experimental system. We find that in the high frequency limit, the Hall conductivity is determined by finite loop current correlations on the s-orbital residing sublattice, the latter a defining feature of the system's chirality. In the opposite limit, the dc Hall conductivity can trace its origin back to the noninteracting band Berry curvature at the condensation momentum, although the contribution from atomic interactions can be significant. We discuss available experimental probes to observe this intrinsic anomalous Hall effect at both zero and finite frequencies.

摘要

反常霍尔效应在许多电子拓扑材料的理解方面产生了深远影响,但在其玻色子对应物中的研究却少得多。我们预测,在最近实现的玻色子手性超流体中存在一种本征反常霍尔效应,即在二维六角氮化硼光学晶格中的p轨道玻色 - 爱因斯坦凝聚体[Wang等人,《自然》(伦敦)596, 227 (2021)NATUAS0028 - 083610.1038/s41586 - 021 - 03702 - 0]。我们在一个能精确描述实际实验系统的多轨道玻色 - 哈伯德模型中评估频率相关的霍尔电导率。我们发现,在高频极限下,霍尔电导率由位于s轨道的子晶格上的有限环流关联决定,后者是系统手性的一个决定性特征。在相反的极限情况下,直流霍尔电导率的起源可以追溯到凝聚动量处的非相互作用能带贝里曲率,尽管原子相互作用的贡献可能很大。我们讨论了在零频率和有限频率下观测这种本征反常霍尔效应的现有实验探测方法。

相似文献

1
Intrinsic Anomalous Hall Effect in a Bosonic Chiral Superfluid.
Phys Rev Lett. 2022 Oct 28;129(18):185301. doi: 10.1103/PhysRevLett.129.185301.
2
Evidence for an atomic chiral superfluid with topological excitations.
Nature. 2021 Aug;596(7871):227-231. doi: 10.1038/s41586-021-03702-0. Epub 2021 Aug 11.
3
Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal.
Nat Phys. 2018 Nov;14(11):1125-1131. doi: 10.1038/s41567-018-0234-5. Epub 2018 Jul 30.
4
Manipulating Berry curvature of SrRuO thin films via epitaxial strain.
Proc Natl Acad Sci U S A. 2021 May 4;118(18). doi: 10.1073/pnas.2101946118.
5
Topological transport in spin-orbit coupled bosonic Mott insulators.
Phys Rev Lett. 2013 Mar 15;110(11):115301. doi: 10.1103/PhysRevLett.110.115301. Epub 2013 Mar 12.
6
π-Flux Dirac Bosons and Topological Edge Excitations in a Bosonic Chiral p-Wave Superfluid.
Phys Rev Lett. 2016 Aug 19;117(8):085301. doi: 10.1103/PhysRevLett.117.085301. Epub 2016 Aug 15.
7
Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets.
Sci Adv. 2018 Feb 9;4(2):eaap9962. doi: 10.1126/sciadv.aap9962. eCollection 2018 Feb.
8
Field-Modulated Anomalous Hall Conductivity and Planar Hall Effect in CoSnS Nanoflakes.
Nano Lett. 2020 Nov 11;20(11):7860-7867. doi: 10.1021/acs.nanolett.0c02219. Epub 2020 Oct 9.
9
Magneto-optical spectroscopy on Weyl nodes for anomalous and topological Hall effects in chiral MnGe.
Nat Commun. 2021 Oct 13;12(1):5974. doi: 10.1038/s41467-021-25276-1.
10
Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNbS.
Nat Commun. 2018 Aug 16;9(1):3280. doi: 10.1038/s41467-018-05756-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验