Tian Di, Liu Zhiwei, Shen Shengchun, Li Zhuolu, Zhou Yu, Liu Hongquan, Chen Hanghui, Yu Pu
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084 Beijing, China.
Department of Electronics, East China Normal University, Shanghai 200241, China.
Proc Natl Acad Sci U S A. 2021 May 4;118(18). doi: 10.1073/pnas.2101946118.
Berry curvature plays a crucial role in exotic electronic states of quantum materials, such as the intrinsic anomalous Hall effect. As Berry curvature is highly sensitive to subtle changes of electronic band structures, it can be finely tuned via external stimulus. Here, we demonstrate in SrRuO thin films that both the magnitude and sign of anomalous Hall resistivity can be effectively controlled with epitaxial strain. Our first-principles calculations reveal that epitaxial strain induces an additional crystal field splitting and changes the order of Ru orbital energies, which alters the Berry curvature and leads to the sign and magnitude change of anomalous Hall conductivity. Furthermore, we show that the rotation of the Ru magnetic moment in real space of a tensile-strained sample can result in an exotic nonmonotonic change of anomalous Hall resistivity with the sweeping of magnetic field, resembling the topological Hall effect observed in noncoplanar spin systems. These findings not only deepen our understanding of anomalous Hall effect in SrRuO systems but also provide an effective tuning knob to manipulate Berry curvature and related physical properties in a wide range of quantum materials.
贝里曲率在量子材料的奇异电子态中起着至关重要的作用,例如本征反常霍尔效应。由于贝里曲率对电子能带结构的细微变化高度敏感,因此可以通过外部刺激进行精细调节。在此,我们在SrRuO薄膜中证明,反常霍尔电阻率的大小和符号都可以通过外延应变有效地控制。我们的第一性原理计算表明,外延应变会引起额外的晶体场分裂,并改变Ru轨道能量的顺序,这会改变贝里曲率并导致反常霍尔电导率的符号和大小发生变化。此外,我们表明,拉伸应变样品在实空间中Ru磁矩的旋转会导致反常霍尔电阻率随磁场扫描出现奇异的非单调变化,类似于在非共面自旋系统中观察到的拓扑霍尔效应。这些发现不仅加深了我们对SrRuO系统中反常霍尔效应的理解,还提供了一个有效的调节旋钮,用于在广泛的量子材料中操纵贝里曲率和相关物理性质。