Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2022 Nov 22;119(47):e2210516119. doi: 10.1073/pnas.2210516119. Epub 2022 Nov 14.
Nearfield spectroscopic imaging techniques can be a powerful tool to map both cellular ultrastructure and molecular composition simultaneously but are currently limited in measurement capability. Resonance enhanced (RE) atomic force microscopy infrared (AFM-IR) spectroscopic imaging offers high-sensitivity measurements, for example, but probe-sample mechanical coupling, nonmolecular optical gradient forces, and noise overwhelm recorded chemical signals. Here, we analyze the key factors limiting AFM-IR measurements and propose an instrument design that enables high-sensitivity nanoscale IR imaging by combining null-deflection measurements with RE sensitivity. Our developed null-deflection scanning probe IR (NDIR) spectroscopic imaging provides ∼24× improvement in signal-to-noise ratio (SNR) compared with the state of the art, enables optimal signal recording by combining cantilever resonance with maximum laser power, and reduces background nonmolecular signals for improved analytical accuracy. We demonstrate the use of these properties for high-sensitivity, hyperspectral imaging of chemical domains in 100-nm-thick sections of cellular acini of a prototypical cancer model cell line, MCF-10A. NDIR chemical imaging enables facile recording of label-free, chemically accurate, high-SNR vibrational spectroscopic data from nanoscale domains, paving the path for routine studies of biomedical, forensic, and materials samples.
近场光谱成象技术可以成为同时绘制细胞超微结构和分子组成图谱的有力工具,但目前在测量能力上存在局限。共振增强(RE)原子力显微镜红外(AFM-IR)光谱成象提供了高灵敏度的测量,例如,但探针-样品机械耦合、非分子光学梯度力和噪声淹没了记录的化学信号。在这里,我们分析了限制 AFM-IR 测量的关键因素,并提出了一种仪器设计,通过将零偏置测量与 RE 灵敏度相结合,实现高灵敏度的纳米级红外成像。我们开发的零偏置扫描探针红外(NDIR)光谱成象技术与最先进的技术相比,提供了约 24 倍的信噪比(SNR)改善,通过将悬臂共振与最大激光功率相结合,实现了最佳信号记录,并减少了背景非分子信号,提高了分析精度。我们展示了这些特性在高灵敏度、高光谱成像中的应用,对典型癌症模型细胞系 MCF-10A 的 100nm 厚细胞腺段中的化学域进行了成像。NDIR 化学成象能够方便地记录无标记、化学准确、高 SNR 振动光谱数据,来自纳米级域,为生物医学、法医和材料样品的常规研究铺平了道路。