Suppr超能文献

体积电子显微镜中的全细胞细胞器分割

Whole-cell organelle segmentation in volume electron microscopy.

作者信息

Heinrich Larissa, Bennett Davis, Ackerman David, Park Woohyun, Bogovic John, Eckstein Nils, Petruncio Alyson, Clements Jody, Pang Song, Xu C Shan, Funke Jan, Korff Wyatt, Hess Harald F, Lippincott-Schwartz Jennifer, Saalfeld Stephan, Weigel Aubrey V

机构信息

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland.

出版信息

Nature. 2021 Nov;599(7883):141-146. doi: 10.1038/s41586-021-03977-3. Epub 2021 Oct 6.

Abstract

Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM). We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.

摘要

细胞包含数百种细胞器和大分子聚集体。要全面了解它们错综复杂的组织,需要对整个细胞进行纳米级别的三维重建,而这只有通过强大且可扩展的自动方法才可行。在此,为支持此类方法的开发,我们使用聚焦离子束扫描电子显微镜(FIB-SEM),以每体素4纳米的近等向性分辨率,对来自多种细胞类型的不同样本体积进行成像,标注了多达35种不同的细胞器类别,从内质网到微管再到核糖体。我们训练深度学习架构,以在每体素4纳米和8纳米的FIB-SEM体积中分割这些结构,验证了它们的性能,并表明自动重建可用于直接量化以前无法获取的指标,包括细胞成分之间的空间相互作用。我们还表明,这种重建可用于自动配准光学和电子显微镜图像以进行相关研究。我们创建了一个开放数据和开源网络存储库“OpenOrganelle”,以共享数据、计算机代码和训练模型,这将使各地的科学家能够查询并进一步改进这些数据集的自动重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验