Suppr超能文献

探针-样本相互作用独立原子力显微镜-红外光谱:迈向稳健的纳米级成分映射。

Probe-Sample Interaction-Independent Atomic Force Microscopy-Infrared Spectroscopy: Toward Robust Nanoscale Compositional Mapping.

机构信息

Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.

Department of Mechanical Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.

出版信息

Anal Chem. 2018 Aug 7;90(15):8845-8855. doi: 10.1021/acs.analchem.8b00823. Epub 2018 Jul 11.

Abstract

Nanoscale topological imaging using atomic force microscopy (AFM) combined with infrared (IR) spectroscopy (AFM-IR) is a rapidly emerging modality to record correlated structural and chemical images. Although the expectation is that the spectral data faithfully represents the underlying chemical composition, the sample mechanical properties affect the recorded data (known as the probe-sample-interaction effect). Although experts in the field are aware of this effect, the contribution is not fully understood. Further, when the sample properties are not well-known or when AFM-IR experiments are conducted by nonexperts, there is a chance that these nonmolecular properties may affect analytical measurements in an uncertain manner. Techniques such as resonance-enhanced imaging and normalization of the IR signal using ratios might improve fidelity of recorded data, but they are not universally effective. Here, we provide a fully analytical model that relates cantilever response to the local sample expansion which opens several avenues. We demonstrate a new method for removing probe-sample-interaction effects in AFM-IR images by measuring the cantilever responsivity using a mechanically induced, out-of-plane sample vibration. This method is then applied to model polymers and mammary epithelial cells to show improvements in sensitivity, accuracy, and repeatability for measuring soft matter when compared to the current state of the art (resonance-enhanced operation). Understanding of the sample-dependent cantilever responsivity is an essential addition to AFM-IR imaging if the identification of chemical features at nanoscale resolutions is to be realized for arbitrary samples.

摘要

利用原子力显微镜(AFM)结合红外(IR)光谱(AFM-IR)进行纳米级拓扑成像,是一种新兴的记录相关结构和化学图像的方法。尽管人们期望光谱数据能真实地反映潜在的化学成分,但样品的机械性能会影响记录的数据(即探针-样品相互作用效应)。尽管该领域的专家已经意识到这一效应,但它的影响还没有被完全理解。此外,当样品的性质不为人知,或者非专家进行 AFM-IR 实验时,这些非分子性质可能会以不确定的方式影响分析测量。例如,共振增强成像和使用比值对 IR 信号进行归一化等技术可能会提高记录数据的保真度,但它们并非普遍有效。在这里,我们提供了一个完全解析的模型,该模型将悬臂梁的响应与局部样品膨胀联系起来,这为我们提供了一些思路。我们通过测量机械诱导的样品面外振动来测量悬臂梁的响应率,从而提出了一种新的方法来去除 AFM-IR 图像中的探针-样品相互作用效应。然后,我们将该方法应用于聚合物和乳腺上皮细胞模型,以显示在测量软物质时,与当前最先进的方法(共振增强操作)相比,该方法在灵敏度、准确性和重复性方面的改进。如果要实现任意样品的纳米分辨率化学特征识别,那么理解样品依赖的悬臂梁响应率是 AFM-IR 成像的一个重要补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/557b/8007076/a784d742a0b3/ac8b00823_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验