Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France.
AIStroSight Lab, INRIA, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69603 Villeurbanne, France.
Proc Natl Acad Sci U S A. 2022 Nov 22;119(47):e2212004119. doi: 10.1073/pnas.2212004119. Epub 2022 Nov 14.
Neural computational power is determined by neuroenergetics, but how and which energy substrates are allocated to various forms of memory engram is unclear. To solve this question, we asked whether neuronal fueling by glucose or lactate scales differently upon increasing neural computation and cognitive loads. Here, using electrophysiology, two-photon imaging, cognitive tasks, and mathematical modeling, we show that both glucose and lactate are involved in engram formation, with lactate supporting long-term synaptic plasticity evoked by high-stimulation load activity patterns and high attentional load in cognitive tasks and glucose being sufficient for less demanding neural computation and learning tasks. Indeed, we show that lactate is mandatory for demanding neural computation, such as theta-burst stimulation, while glucose is sufficient for lighter forms of activity-dependent long-term potentiation (LTP), such as spike timing-dependent plasticity (STDP). We find that subtle variations of spike number or frequency in STDP are sufficient to shift the on-demand fueling from glucose to lactate. Finally, we demonstrate that lactate is necessary for a cognitive task requiring high attentional load, such as the object-in-place task, and for the corresponding in vivo hippocampal LTP expression but is not needed for a less demanding task, such as a simple novel object recognition. Overall, these results demonstrate that glucose and lactate metabolism are differentially engaged in neuronal fueling depending on the complexity of the activity-dependent plasticity and behavior.
神经计算能力由神经能量学决定,但不清楚哪些能量底物被分配到各种形式的记忆痕迹中。为了解决这个问题,我们想知道神经元是如何根据神经计算和认知负荷的增加而不同地利用葡萄糖或乳酸作为燃料的。在这里,我们使用电生理学、双光子成像、认知任务和数学建模,表明葡萄糖和乳酸都参与了记忆痕迹的形成,其中乳酸支持由高刺激负荷活动模式和认知任务中的高注意力负荷引起的长时程突触可塑性,而葡萄糖则足以满足较低要求的神经计算和学习任务。事实上,我们表明,乳酸对于要求较高的神经计算,如θ爆发刺激是必需的,而葡萄糖则足以满足较轻形式的活动依赖性长时程增强(LTP),如尖峰时间依赖性可塑性(STDP)。我们发现,在 STDP 中尖峰数量或频率的微小变化足以将按需燃料从葡萄糖转移到乳酸。最后,我们证明,在需要高注意力负荷的认知任务(如位置物体任务)中,以及在对应的海马体 LTP 表达中,乳酸是必需的,但在要求较低的任务(如简单的新物体识别)中则不需要。总的来说,这些结果表明,葡萄糖和乳酸代谢在神经元供能方面根据活动依赖性可塑性和行为的复杂程度而有所不同。