Piette Charlotte, Touboul Jonathan, Venance Laurent
Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Université PSL, Paris, France.
Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States.
Front Cell Neurosci. 2020 Oct 28;14:575915. doi: 10.3389/fncel.2020.575915. eCollection 2020.
Fast learning designates the behavioral and neuronal mechanisms underlying the acquisition of a long-term memory trace after a unique and brief experience. As such it is opposed to incremental, slower reinforcement or procedural learning requiring repetitive training. This learning process, found in most animal species, exists in a large spectrum of natural behaviors, such as one-shot associative, spatial, or perceptual learning, and is a core principle of human episodic memory. We review here the neuronal and synaptic long-term changes associated with fast learning in mammals and discuss some hypotheses related to their underlying mechanisms. We first describe the variety of behavioral paradigms used to test fast learning memories: those preferentially involve a single and brief (from few hundred milliseconds to few minutes) exposures to salient stimuli, sufficient to trigger a long-lasting memory trace and new adaptive responses. We then focus on neuronal activity patterns observed during fast learning and the emergence of long-term selective responses, before documenting the physiological correlates of fast learning. In the search for the engrams of fast learning, a growing body of evidence highlights long-term changes in gene expression, structural, intrinsic, and synaptic plasticities. Finally, we discuss the potential role of the sparse and bursting nature of neuronal activity observed during the fast learning, especially in the induction plasticity mechanisms leading to the rapid establishment of long-term synaptic modifications. We conclude with more theoretical perspectives on network dynamics that could enable fast learning, with an overview of some theoretical approaches in cognitive neuroscience and artificial intelligence.
快速学习指的是在一次独特且短暂的经历后,形成长期记忆痕迹所涉及的行为和神经元机制。因此,它与渐进式、较慢的强化学习或需要重复训练的程序性学习相反。这种学习过程在大多数动物物种中都存在,存在于广泛的自然行为中,比如一次性联想学习、空间学习或感知学习,并且是人类情景记忆的核心原则。我们在此回顾与哺乳动物快速学习相关的神经元和突触长期变化,并讨论一些与其潜在机制相关的假说。我们首先描述用于测试快速学习记忆的各种行为范式:这些范式优先涉及对显著刺激的单次且短暂(从几百毫秒到几分钟)的暴露,足以触发持久的记忆痕迹和新的适应性反应。然后,在记录快速学习的生理相关性之前,我们聚焦于快速学习过程中观察到的神经元活动模式以及长期选择性反应的出现。在寻找快速学习的记忆痕迹时,越来越多的证据突显了基因表达、结构、内在和突触可塑性方面的长期变化。最后,我们讨论在快速学习过程中观察到的神经元活动的稀疏性和爆发性本质的潜在作用,特别是在导致长期突触修饰快速建立的诱导可塑性机制方面。我们以关于网络动力学的更多理论观点作为总结,这些观点可能实现快速学习,并概述认知神经科学和人工智能中的一些理论方法。