Ma Xuezhi, Kudtarkar Kaushik, Chen Yixin, Cunha Preston, Ma Yuan, Watanabe Kenji, Taniguchi Takashi, Qian Xiaofeng, Hipwell M Cynthia, Wong Zi Jing, Lan Shoufeng
Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA.
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Nat Commun. 2022 Nov 14;13(1):6916. doi: 10.1038/s41467-022-34740-5.
A double-edged sword in two-dimensional material science and technology is optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we demonstrated a giant enhancement (~1400) for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7°. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve.
二维材料科学与技术中的一把双刃剑是光学禁戒暗激子。一方面,由于其长寿命,它在凝聚态物理、量子信息处理和光电子学方面极具吸引力。另一方面,从激发和探测的角度来看,它因光学上无法接近而声名狼藉。在这里,我们通过重新引入连续统中的光子束缚态(BICs)以在动量空间中操纵暗激子,为这一困境提供了一种高效且低损耗的解决方案。在单层二硒化钨垂直入射的情况下,我们展示了由具有固有面外电场的横向磁BICs实现的暗激子的巨大增强(约1400倍)。通过进一步采用广泛可调谐的弗里德里希 - 温特根BICs,我们展示了暗激子的高定向发射,其发散角仅为7°。我们发现这种定向发射在室温下是相干的,这在偏振分析和干涉测量中得到了明确展示。因此,重新引入作为动量空间光子环境的BICs可能是一个有趣的平台,用于重塑和重新定义附近量子材料(如低维材料)中的光与物质相互作用,否则这些相互作用具有挑战性甚至无法实现。