Kravtsov Vasily, Khestanova Ekaterina, Benimetskiy Fedor A, Ivanova Tatiana, Samusev Anton K, Sinev Ivan S, Pidgayko Dmitry, Mozharov Alexey M, Mukhin Ivan S, Lozhkin Maksim S, Kapitonov Yuri V, Brichkin Andrey S, Kulakovskii Vladimir D, Shelykh Ivan A, Tartakovskii Alexander I, Walker Paul M, Skolnick Maurice S, Krizhanovskii Dmitry N, Iorsh Ivan V
1ITMO University, Saint Petersburg, 197101 Russia.
2St. Petersburg Academic University, Saint Petersburg, 194021 Russia.
Light Sci Appl. 2020 Apr 9;9:56. doi: 10.1038/s41377-020-0286-z. eCollection 2020.
Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs. Here, we mix the optical BIC in a photonic crystal slab with excitons in the atomically thin semiconductor MoSe to form nonlinear exciton-polaritons with a Rabi splitting of 27 meV, exhibiting large interaction-induced spectral blueshifts. The asymptotic BIC-like suppression of polariton radiation into the far field toward the BIC wavevector, in combination with effective reduction of the excitonic disorder through motional narrowing, results in small polariton linewidths below 3 meV. Together with a strongly wavevector-dependent -factor, this provides for the enhancement and control of polariton-polariton interactions and the resulting nonlinear optical effects, paving the way toward tuneable BIC-based polaritonic devices for sensing, lasing, and nonlinear optics.
连续域中的光学束缚态(BICs)为在光子晶体中设计非常窄的共振提供了一种方法。这些系统中延长的相互作用时间对于增强非线性光学过程以及开发下一代有源光学器件特别有前景。然而,可实现的相互作用强度受到光学BICs纯光子特性的限制。在这里,我们将光子晶体平板中的光学BIC与原子级薄半导体MoSe中的激子混合,形成具有27 meV拉比分裂的非线性激子极化激元,表现出大的相互作用诱导光谱蓝移。朝向BIC波矢的极化激元辐射向远场的渐近类BIC抑制,与通过运动窄化有效降低激子无序相结合,导致极化激元线宽小于3 meV。再加上强烈依赖波矢的 因子,这为增强和控制极化激元 - 极化激元相互作用以及由此产生的非线性光学效应提供了条件,为用于传感、激光和非线性光学的基于BIC的可调谐极化激元器件铺平了道路。