Miyahara Hideyuki, Roychowdhury Vwani
Department of Electrical and Computer Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA.
Sci Rep. 2022 Nov 14;12(1):19520. doi: 10.1038/s41598-022-20688-5.
The paradigm of variational quantum classifiers (VQCs) encodes classical information as quantum states, followed by quantum processing and then measurements to generate classical predictions. VQCs are promising candidates for efficient utilizations of noisy intermediate scale quantum (NISQ) devices: classifiers involving M-dimensional datasets can be implemented with only [Formula: see text] qubits by using an amplitude encoding. A general framework for designing and training VQCs, however, is lacking. An encouraging specific embodiment of VQCs, quantum circuit learning (QCL), utilizes an ansatz: a circuit with a predetermined circuit geometry and parametrized gates expressing a time-evolution unitary operator; training involves learning the gate parameters through a gradient-descent algorithm where the gradients themselves can be efficiently estimated by the quantum circuit. The representational power of QCL, however, depends strongly on the choice of the ansatz, as it limits the range of possible unitary operators that a VQC can search over. Equally importantly, the landscape of the optimization problem may have challenging properties such as barren plateaus and the associated gradient-descent algorithm may not find good local minima. Thus, it is critically important to estimate (i) the price of ansatz; that is, the gap between the performance of QCL and the performance of ansatz-independent VQCs, and (ii) the price of using quantum circuits as classical classifiers: that is, the performance gap between VQCs and equivalent classical classifiers. This paper develops a computational framework to address both these open problems. First, it shows that VQCs, including QCL, fit inside the well-known kernel method. Next it introduces a framework for efficiently designing ansatz-independent VQCs, which we call the unitary kernel method (UKM). The UKM framework enables one to estimate the first known computationally-determined bounds on both the price of ansatz and the price of any speedup advantages of VQCs: numerical results with datatsets of various dimensions, ranging from 4 to 256, show that the ansatz-induced gap can vary between 10 and 20[Formula: see text], while the VQC-induced gap (between VQC and kernel method) can vary between 10 and 16[Formula: see text]. To further understand the role of ansatz in VQCs, we also propose a method of decomposing a given unitary operator into a quantum circuit, which we call the variational circuit realization (VCR): given any parameterized circuit block (as for example, used in QCL), it finds optimal parameters and the number of layers of the circuit block required to approximate any target unitary operator with a given precision.
变分量子分类器(VQC)范式将经典信息编码为量子态,接着进行量子处理,然后通过测量生成经典预测。VQC是有效利用噪声中等规模量子(NISQ)设备的有前途的候选者:涉及M维数据集的分类器可以通过幅度编码仅用[公式:见正文]个量子比特来实现。然而,缺乏设计和训练VQC的通用框架。VQC的一个令人鼓舞的具体实例,即量子电路学习(QCL),利用了一种假设:具有预定电路几何结构和表示时间演化酉算子的参数化门的电路;训练涉及通过梯度下降算法学习门参数,其中梯度本身可以由量子电路有效地估计。然而,QCL的表示能力在很大程度上取决于假设的选择,因为它限制了VQC可以搜索的可能酉算子的范围。同样重要的是,优化问题的态势可能具有挑战性的性质,例如贫瘠高原,并且相关的梯度下降算法可能找不到好的局部最小值。因此,至关重要的是估计(i)假设的代价;即QCL的性能与独立于假设的VQC的性能之间的差距,以及(ii)使用量子电路作为经典分类器的代价:即VQC与等效经典分类器之间的性能差距。本文开发了一个计算框架来解决这两个开放问题。首先,它表明包括QCL在内的VQC适合于著名的核方法。接下来它引入了一个有效设计独立于假设的VQC的框架,我们称之为酉核方法(UKM)。UKM框架使人们能够估计关于假设代价和VQC任何加速优势代价的第一个已知的计算确定的界限:使用从4到256的各种维度的数据集的数值结果表明,假设引起的差距可以在10到20[公式:见正文]之间变化,而VQC引起的差距(VQC与核方法之间)可以在10到16[公式:见正文]之间变化。为了进一步理解假设在VQC中的作用,我们还提出了一种将给定酉算子分解为量子电路的方法,我们称之为变分电路实现(VCR):给定任何参数化电路块(例如,用于QCL),它找到最优参数以及以给定精度近似任何目标酉算子所需的电路块层数。