Suppr超能文献

特征希尔伯特空间中的量子机器学习。

Quantum Machine Learning in Feature Hilbert Spaces.

机构信息

Xanadu, 372 Richmond Street West, Toronto M5V 2L7, Canada.

出版信息

Phys Rev Lett. 2019 Feb 1;122(4):040504. doi: 10.1103/PhysRevLett.122.040504.

Abstract

A basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely, to efficiently perform computations in an intractably large Hilbert space. In this Letter we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyze the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. The kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualize the working principle with two-dimensional minibenchmark datasets.

摘要

量子计算的一个基本思想与机器学习中的核方法惊人地相似,即有效地在难以计算的大 Hilbert 空间中进行计算。在这封信中,我们探索了这种联系的一些理论基础,并展示了它如何为量子机器学习算法的设计开辟了一条新途径。我们将输入的编码过程解释为将数据映射到量子 Hilbert 空间的非线性特征映射。现在,量子计算机可以在这个特征空间中分析输入数据。基于这个链接,我们讨论了构建分类量子模型的两种方法。在第一种方法中,量子设备估计量子态的内积以计算经典上难以处理的核。该核可以馈送到任何经典核方法,例如支持向量机。在第二种方法中,我们使用变分量子电路作为线性模型,在 Hilbert 空间中显式地对数据进行分类。我们使用连续变量系统中的压缩作为特征映射来说明这些想法,并使用二维 minibenchmark 数据集可视化工作原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验