Suppr超能文献

头盔压力支持、持续气道正压通气和鼻高流量对低氧性呼吸衰竭的各自影响:一项随机交叉临床试验。

Respective Effects of Helmet Pressure Support, Continuous Positive Airway Pressure, and Nasal High-Flow in Hypoxemic Respiratory Failure: A Randomized Crossover Clinical Trial.

机构信息

Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy.

出版信息

Am J Respir Crit Care Med. 2023 May 15;207(10):1310-1323. doi: 10.1164/rccm.202204-0629OC.

Abstract

The respective effects of positive end-expiratory pressure (PEEP) and pressure support delivered through the helmet interface in patients with hypoxemia need to be better understood. To assess the respective effects of helmet pressure support (noninvasive ventilation [NIV]) and continuous positive airway pressure (CPAP) compared with high-flow nasal oxygen (HFNO) on effort to breathe, lung inflation, and gas exchange in patients with hypoxemia (Pa/Fi ⩽ 200). Fifteen patients underwent 1-hour phases (constant Fi) of HFNO (60 L/min), helmet NIV (PEEP = 14 cm HO, pressure support = 12 cm HO), and CPAP (PEEP = 14 cm HO) in randomized sequence. Inspiratory esophageal (ΔP) and transpulmonary pressure (ΔP) swings were used as surrogates for inspiratory effort and lung distension, respectively. Tidal Volume (Vt) and end-expiratory lung volume were assessed with electrical impedance tomography. ΔP was lower during NIV versus CPAP and HFNO (median [interquartile range], 5 [3-9] cm HO vs. 13 [10-19] cm HO vs. 10 [8-13] cm HO;  = 0.001 and  = 0.01). ΔP was not statistically different between treatments. Pa/Fi ratio was significantly higher during NIV and CPAP versus HFNO (166 [136-215] and 175 [158-281] vs. 120 [107-149];  = 0.002 and  = 0.001). NIV and CPAP similarly increased Vt versus HFNO (mean change, 70% [95% confidence interval (CI), 17-122%],  = 0.02; 93% [95% CI, 30-155%],  = 0.002) and end-expiratory lung volume (mean change, 198% [95% CI, 67-330%],  = 0.001; 263% [95% CI, 121-407%],  = 0.001), mostly due to increased aeration/ventilation in dorsal lung regions. During HFNO, 14 of 15 patients had pendelluft involving >10% of Vt; pendelluft was mitigated by CPAP and further by NIV. Compared with HFNO, helmet NIV, but not CPAP, reduced ΔP. CPAP and NIV similarly increased oxygenation, end-expiratory lung volume, and Vt, without affecting ΔP. NIV, and to a lesser extent CPAP, mitigated pendelluft. Clinical trial registered with clinicaltrials.gov (NCT04241861).

摘要

需要更好地了解正呼气末压(PEEP)和通过头盔界面提供的压力支持各自对低氧血症患者的影响。评估头盔压力支持(无创通气 [NIV])和持续气道正压通气(CPAP)与高流量鼻氧(HFNO)相比对低氧血症患者(Pa/Fi ⁇ ⁇ 200)呼吸努力、肺充气和气体交换的各自影响。15 名患者接受了 1 小时的 HFNO(60 L/min)、头盔 NIV(PEEP = 14 cm HO,压力支持 = 12 cm HO)和 CPAP(PEEP = 14 cm HO)的随机阶段。使用食管吸气(ΔP)和跨肺压(ΔP)波动作为吸气努力和肺膨胀的替代指标。潮气量(Vt)和呼气末肺容量通过电阻抗断层扫描评估。与 CPAP 和 HFNO 相比,NIV 期间的 ΔP 更低(中位数 [四分位间距],5 [3-9] cm HO 比 13 [10-19] cm HO 比 10 [8-13] cm HO;= 0.001 和 = 0.01)。治疗之间 ΔP 无统计学差异。与 HFNO 相比,NIV 和 CPAP 期间的 Pa/Fi 比值显着更高(166 [136-215] 和 175 [158-281] 比 120 [107-149];= 0.002 和 = 0.001)。与 HFNO 相比,NIV 和 CPAP 同样增加了 Vt(平均变化,70%[95%置信区间(CI),17-122%],= 0.02;93%[95% CI,30-155%],= 0.002)和呼气末肺容量(平均变化,198%[95% CI,67-330%],= 0.001;263%[95% CI,121-407%],= 0.001),主要是由于背部肺区通气/通气增加。在 HFNO 期间,15 名患者中有 14 名患者的 pendelluft 涉及 >10%的 Vt;CPAP 和进一步的 NIV 减轻了 pendelluft。与 HFNO 相比,头盔 NIV 降低了 ΔP,但 CPAP 没有。CPAP 和 NIV 同样增加了氧合、呼气末肺容量和 Vt,而不影响 ΔP。NIV 减轻了 pendelluft,而 CPAP 的作用较小。该临床试验在 clinicaltrials.gov 注册(NCT04241861)。

相似文献

2
Physiological Comparison of High-Flow Nasal Cannula and Helmet Noninvasive Ventilation in Acute Hypoxemic Respiratory Failure.
Am J Respir Crit Care Med. 2020 Feb 1;201(3):303-312. doi: 10.1164/rccm.201904-0841OC.
3
Physiological effects of awake prone position in acute hypoxemic respiratory failure.
Crit Care. 2023 Aug 17;27(1):315. doi: 10.1186/s13054-023-04600-9.
6
Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS.
Intensive Care Med. 2021 Aug;47(8):851-866. doi: 10.1007/s00134-021-06459-2. Epub 2021 Jul 7.
8
Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support.
Minerva Anestesiol. 2019 Sep;85(9):1014-1023. doi: 10.23736/S0375-9393.19.13418-9. Epub 2019 Mar 12.
9
Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates.
Intensive Care Med. 2017 Oct;43(10):1453-1463. doi: 10.1007/s00134-017-4890-1. Epub 2017 Jul 31.

引用本文的文献

1
Assessing inspiratory drive and effort in critically ill patients at the bedside.
Crit Care. 2025 Jul 31;29(1):339. doi: 10.1186/s13054-025-05526-0.
2
Noninvasive respiratory supports in ICU.
Intensive Care Med. 2025 Aug;51(8):1476-1489. doi: 10.1007/s00134-025-08036-3. Epub 2025 Jul 24.
6
Awake Prone Positioning in Adults With COVID-19: An Individual Participant Data Meta-Analysis.
JAMA Intern Med. 2025 May 1;185(5):572-581. doi: 10.1001/jamainternmed.2025.0011.

本文引用的文献

3
Noninvasive respiratory support in intensive care medicine.
Intensive Care Med. 2022 Sep;48(9):1211-1214. doi: 10.1007/s00134-022-06762-6. Epub 2022 Jun 27.
4
Helmet noninvasive support in hypoxemic respiratory failure.
Intensive Care Med. 2022 Aug;48(8):1072-1075. doi: 10.1007/s00134-022-06737-7. Epub 2022 Jun 17.
8
High-Flow Nasal Oxygen for Severe Hypoxemia: Oxygenation Response and Outcome in Patients with COVID-19.
Am J Respir Crit Care Med. 2022 Feb 15;205(4):431-439. doi: 10.1164/rccm.202109-2163OC.
9
Phenotypes of Patients with COVID-19 Who Have a Positive Clinical Response to Helmet Noninvasive Ventilation.
Am J Respir Crit Care Med. 2022 Feb 1;205(3):360-364. doi: 10.1164/rccm.202105-1212LE.
10
Noninvasive respiratory support for acute respiratory failure due to COVID-19.
Curr Opin Crit Care. 2022 Feb 1;28(1):25-50. doi: 10.1097/MCC.0000000000000902.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验