Suppr超能文献

多地点风速预测的新方法。

Novel methods for wind speeds prediction across multiple locations.

机构信息

Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai, China.

University of Stavanger, Stavanger, Norway.

出版信息

Sci Rep. 2022 Nov 15;12(1):19614. doi: 10.1038/s41598-022-24061-4.

Abstract

This article provides two unique methodologies that may be coupled to study the dependability of multidimensional nonlinear dynamic systems. First, the structural reliability approach is well suited for multidimensional environmental and structural reactions and is either measured or numerically simulated over sufficient time, yielding lengthy ergodic time series. Second, a unique approach to predicting extreme values has technical and environmental implications. In the event of measurable environmental loads, it is also feasible to calculate the probability of system failure, as shown in this research. In addition, traditional probability approaches for time series cannot cope effectively with the system's high dimensionality and cross-correlation across dimensions. It is common knowledge that wind speeds represent a complex, nonlinear, multidimensional, and cross-correlated dynamic environmental system that is always difficult to analyze. Additionally, global warming is a significant element influencing ocean waves throughout time. This section aims to demonstrate the efficacy of the previously mentioned technique by applying a novel method to the Norwegian offshore data set for the greatest daily wind cast speeds in the vicinity of the Landvik wind station. This study aims to evaluate the state-of-the-art approach for extracting essential information about the extreme reaction from observed time histories. The approach provided in this research enables the simple and efficient prediction of failure probability for the whole nonlinear multidimensional dynamic system.

摘要

本文提供了两种独特的方法,可以结合起来研究多维非线性动力系统的可靠性。首先,结构可靠性方法非常适合多维环境和结构反应,可以在足够长的时间内进行测量或数值模拟,从而产生冗长的遍历时间序列。其次,一种预测极值的独特方法具有技术和环境意义。在可测量的环境载荷的情况下,也可以计算系统失效的概率,正如本研究所示。此外,传统的时间序列概率方法不能有效地处理系统的高维性和各维度之间的交叉相关性。众所周知,风速代表了一个复杂、非线性、多维和交叉相关的动力环境系统,总是难以分析。此外,全球变暖是影响海洋波浪随时间变化的一个重要因素。本节旨在通过将一种新方法应用于挪威近海数据集,即附近 Landvik 风站的最大日风级风速,来证明前面提到的技术的有效性。本研究旨在评估从观测到的时间历史中提取关于极端反应的基本信息的最新方法。本文提供的方法可以简单有效地预测整个非线性多维动力系统的失效概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/161b/9666359/81dc42ba6520/41598_2022_24061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验