Suppr超能文献

利用反褶积改进极端海上风速预测。

Improving extreme offshore wind speed prediction by using deconvolution.

作者信息

Gaidai Oleg, Xing Yihan, Balakrishna Rajiv, Xu Jingxiang

机构信息

Shanghai Engineering Research Center of Hadal Science and Technology, College of Engineering Science and Technology, Shanghai Ocean University, China.

University of Stavanger, Norway.

出版信息

Heliyon. 2023 Feb 6;9(2):e13533. doi: 10.1016/j.heliyon.2023.e13533. eCollection 2023 Feb.

Abstract

This study proposes an innovative method for predicting extreme values in offshore engineering. This includes and is not limited to environmental loads due to offshore wind and waves and related structural reliability issues. Traditional extreme value predictions are frequently constructed using certain statistical distribution functional classes. The proposed method differs from this as it does not assume any extrapolation-specific functional class and is based on the data set's intrinsic qualities. To demonstrate the method's effectiveness, two wind speed data sets were analysed and the forecast accuracy of the suggested technique has been compared to the Naess-Gaidai extrapolation method. The original batch of data consisted of simulated wind speeds. The second data related to wind speed was recorded at an offshore Norwegian meteorological station.

摘要

本研究提出了一种用于预测海洋工程中极值的创新方法。这包括但不限于海上风浪引起的环境载荷以及相关的结构可靠性问题。传统的极值预测通常使用某些统计分布函数类来构建。所提出的方法与此不同,因为它不假设任何特定的外推函数类,而是基于数据集的内在特性。为了证明该方法的有效性,分析了两个风速数据集,并将所建议技术的预测准确性与奈斯 - 盖代外推法进行了比较。原始的一批数据由模拟风速组成。第二个风速数据是在挪威一个近海气象站记录的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/581e/9941992/d81739c0e915/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验