Suppr超能文献

作用于油轮船首的冰荷载的运行可靠性研究

Operational reliability study of ice loads acting on oil tanker bow.

作者信息

Zhang Jian, Gaidai Oleg, Ji Hegang, Xing Yihan

机构信息

Jiangsu University of Science and Technology, Zhenjiang, China.

Shanghai Ocean University, Shanghai, China.

出版信息

Heliyon. 2023 Apr 5;9(4):e15189. doi: 10.1016/j.heliyon.2023.e15189. eCollection 2023 Apr.

Abstract

As a result of climate change, the Arctic glaciers start to melt, and the summer season arrives, making it acceptable for trade ships. There is still shattered ice in the saltwater even though the Arctic glaciers melt in the summer. The stochastic ice loading on the ship's hull is a complex ship-ice interaction. In order to properly build a vessel, it is necessary to reliably estimate the consequent high bow stresses using statistical extrapolation techniques. The bivariate reliability approach is used in this study to compute the excessive bow forces that an oil tanker encounters while sailing in the Arctic Ocean. Two stages are taken in the analysis. First, ANSYS/LS-DYNA is used to compute the oil tanker's bow stress distribution. Second, high bow stresses are projected utilizing a unique dependability methodology to evaluate return levels associated with extended return times. This research focuses on bow loads of an oil tanker travelling in the Artic Ocean using the recorded ice thickness distribution. To take advantage of weaker ice, the vessel's itinerary across the Arctic Ocean was windy (not the shortest straight path). This results in the ship route data used being inaccurate concerning the ice thickness statistics for the area yet skewed concerning the ice thickness data that was particular to a vessel's path. Therefore, this work aims to present a quick and precise approach for estimating the high bow stresses experienced by oil tankers along a given path. Most designs incorporate univariate characteristic values, while this study advocates a bivariate reliability approach for a safer and better design.

摘要

由于气候变化,北极冰川开始融化,夏季来临,贸易船只得以通行。尽管北极冰川在夏季融化,但海水中仍有破碎的冰块。船体上的随机冰荷载是一种复杂的船冰相互作用。为了正确建造一艘船舶,有必要使用统计外推技术可靠地估计由此产生的高艏应力。本研究采用双变量可靠性方法来计算一艘油轮在北冰洋航行时所遇到的过大艏向力。分析过程分两个阶段进行。首先,使用ANSYS/LS-DYNA计算油轮的艏应力分布。其次,利用一种独特的可靠性方法预测高艏应力,以评估与延长返回时间相关的返回水平。本研究利用记录的冰厚分布,重点关注在北冰洋航行的油轮的艏向荷载。为了利用较弱的冰层,该船穿越北冰洋的航线多风(并非最短的直线航线)。这导致所使用的船舶航线数据在该区域的冰厚统计方面不准确,但在特定船舶航线的冰厚数据方面存在偏差。因此,这项工作旨在提出一种快速而精确的方法,用于估计油轮沿给定航线所经历的高艏应力。大多数设计采用单变量特征值,而本研究提倡采用双变量可靠性方法,以实现更安全、更好的设计。

相似文献

1
Operational reliability study of ice loads acting on oil tanker bow.
Heliyon. 2023 Apr 5;9(4):e15189. doi: 10.1016/j.heliyon.2023.e15189. eCollection 2023 Apr.
2
Oil tanker under ice loadings.
Sci Rep. 2023 May 29;13(1):8670. doi: 10.1038/s41598-023-34606-w.
3
High interannual variability of sea ice thickness in the Arctic region.
Nature. 2003 Oct 30;425(6961):947-50. doi: 10.1038/nature02050.
4
Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging.
Glob Chang Biol. 2015 Mar;21(3):1116-23. doi: 10.1111/gcb.12811. Epub 2015 Jan 12.
5
Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data.
Sci Total Environ. 2005 Apr 15;342(1-3):5-86. doi: 10.1016/j.scitotenv.2004.12.059. Epub 2005 Mar 19.
6
Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.
Ambio. 2017 Dec;46(Suppl 3):355-367. doi: 10.1007/s13280-017-0951-5.
7
A year-round satellite sea-ice thickness record from CryoSat-2.
Nature. 2022 Sep;609(7927):517-522. doi: 10.1038/s41586-022-05058-5. Epub 2022 Sep 14.
8
9
Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean.
J Acoust Soc Am. 2013 Apr;133(4):1971-80. doi: 10.1121/1.4790356.
10
The Minderoo-Monaco Commission on Plastics and Human Health.
Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.

引用本文的文献

1
HIV deathrate prediction by Gaidai multivariate risks assessment method.
Immun Inflamm Dis. 2024 Oct;12(10):e70040. doi: 10.1002/iid3.70040.
2
Future worldwide coronavirus disease 2019 epidemic predictions by Gaidai multivariate risk evaluation method.
Anal Sci Adv. 2024 Aug 27;5(7-8):e2400027. doi: 10.1002/ansa.202400027. eCollection 2024 Aug.
3
Gaidai reliability method for long-term coronavirus modelling.
F1000Res. 2023 Nov 21;11:1282. doi: 10.12688/f1000research.125924.2. eCollection 2022.
4
Carbon Storage Tanker Lifetime Assessment.
Glob Chall. 2023 May 11;7(7):2300011. doi: 10.1002/gch2.202300011. eCollection 2023 Jul.

本文引用的文献

1
Gaidai reliability method for long-term coronavirus modelling.
F1000Res. 2023 Nov 21;11:1282. doi: 10.12688/f1000research.125924.2. eCollection 2022.
2
Prediction of death rates for cardiovascular diseases and cancers.
Cancer Innov. 2023 Feb 9;2(2):140-147. doi: 10.1002/cai2.47. eCollection 2023 Apr.
3
Novel methods for reliability study of multi-dimensional non-linear dynamic systems.
Sci Rep. 2023 Mar 7;13(1):3817. doi: 10.1038/s41598-023-30704-x.
4
Characterisation of extreme load responses of a 10-MW floating semi-submersible type wind turbine.
Heliyon. 2023 Feb 14;9(2):e13728. doi: 10.1016/j.heliyon.2023.e13728. eCollection 2023 Feb.
5
Piezoelectric Energy Harvester Response Statistics.
Micromachines (Basel). 2023 Jan 20;14(2):271. doi: 10.3390/mi14020271.
6
Improving extreme offshore wind speed prediction by using deconvolution.
Heliyon. 2023 Feb 6;9(2):e13533. doi: 10.1016/j.heliyon.2023.e13533. eCollection 2023 Feb.
7
Global Cardiovascular Diseases Death Rate Prediction.
Curr Probl Cardiol. 2023 May;48(5):101622. doi: 10.1016/j.cpcardiol.2023.101622. Epub 2023 Jan 29.
8
Novel methods for coupled prediction of extreme wind speeds and wave heights.
Sci Rep. 2023 Jan 20;13(1):1119. doi: 10.1038/s41598-023-28136-8.
9
Future world cancer death rate prediction.
Sci Rep. 2023 Jan 6;13(1):303. doi: 10.1038/s41598-023-27547-x.
10
Offshore tethered platform springing response statistics.
Sci Rep. 2022 Dec 7;12(1):21182. doi: 10.1038/s41598-022-25806-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验