Suppr超能文献

液态GaTe中半导体-金属转变时的瞬态介观不混溶性、粘度异常及高内压

Transient Mesoscopic Immiscibility, Viscosity Anomaly, and High Internal Pressure at the Semiconductor-Metal Transition in Liquid GaTe.

作者信息

Kassem Mohammad, Benmore Chris J, Usuki Takeshi, Ohara Koji, Tverjanovich Andrey, Bokova Maria, Brazhkin Vadim V, Bychkov Eugene

机构信息

Université du Littoral Côte d'Opale, 59140Dunkerque, France.

X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois60439, United States.

出版信息

J Phys Chem Lett. 2022 Nov 24;13(46):10843-10850. doi: 10.1021/acs.jpclett.2c02899. Epub 2022 Nov 16.

Abstract

Gallium tellurides appear to be promising phase-change materials (PCMs) of the next generation for brain-inspired computing and reconfigurable optical metasurfaces. They are different from the benchmark PCMs because of sp gallium hybridization in both cubic GaTe and amorphous pulsed laser deposition (PLD) films. Liquid GaTe also shows a viscosity η() anomaly just above melting when η() first and only then starts decreasing. We used high-energy X-ray diffraction to observe a transient mesoscopic immiscibility that suggested dense metallic liquid droplets in a semiconducting melt. The η() shape was consistent with this finding. A vanishing first sharp diffraction peak that also shifts to a higher indicates a high internal pressure in the metallic melt, which produces a remarkable asymmetry of the Ga-Te nearest neighbor distances and is reminiscent of high-pressure rhombohedral GaTe. The observed phenomena provide a realistic scenario for a fast, multilevel SET-RESET response, which also unravels similar trends in the purported density-driven liquid polyamorphism of water, phosphorus, sulfur, and other materials.

摘要

碲化镓似乎是下一代用于脑启发计算和可重构光学超表面的有前途的相变材料(PCM)。由于立方GaTe和非晶脉冲激光沉积(PLD)薄膜中都存在sp镓杂化,它们与基准PCM不同。液态GaTe在略高于熔点时也显示出粘度η()异常,即η()先升高,然后才开始下降。我们使用高能X射线衍射观察到一种瞬态介观不混溶性,这表明在半导体熔体中存在密集的金属液滴。η()的形状与这一发现一致。第一个尖锐衍射峰的消失以及它向更高处的移动表明金属熔体中存在高内部压力,这导致Ga-Te最近邻距离出现显著不对称,并且让人联想到高压菱面体GaTe。观察到的现象为快速、多级SET-RESET响应提供了一个现实的场景,这也揭示了水、磷、硫和其他材料中所谓的密度驱动液体多晶型的类似趋势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验