Suppr超能文献

分辨率、颜色和运动对基于机器人传感器数据的数字孪生体中物体识别的影响。

Impact of resolution, colour, and motion on object identification in digital twins from robot sensor data.

作者信息

Bremner Paul, Giuliani Manuel

机构信息

Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom.

出版信息

Front Robot AI. 2022 Oct 28;9:995342. doi: 10.3389/frobt.2022.995342. eCollection 2022.

Abstract

This paper makes a contribution to research on digital twins that are generated from robot sensor data. We present the results of an online user study in which 240 participants were tasked to identify real-world objects from robot point cloud data. In the study we manipulated the render style (point clouds vs voxels), render resolution (i.e., density of point clouds and granularity of voxel grids), colour (monochrome vs coloured points/voxels), and motion (no motion vs rotational motion) of the shown objects to measure the impact of these attributes on object recognition performance. A statistical analysis of the study results suggests that there is a three-way interaction between our independent variables. Further analysis suggests: ) objects are easier to recognise when rendered as point clouds than when rendered as voxels, particularly lower resolution voxels; ) the effect of colour and motion is affected by how objects are rendered, e.g., utility of colour decreases with resolution for point clouds; ) an increased resolution of point clouds only leads to an increased object recognition if points are coloured and static; ) high resolution voxels outperform medium and low resolution voxels in all conditions, but there is little difference between medium and low resolution voxels; ) motion is unable to improve the performance of voxels at low and medium resolutions, but is able to improve performance for medium and low resolution point clouds. Our results have implications for the design of robot sensor suites and data gathering and transmission protocols when creating digital twins from robot gathered point cloud data.

摘要

本文对从机器人传感器数据生成的数字孪生研究做出了贡献。我们展示了一项在线用户研究的结果,该研究让240名参与者从机器人点云数据中识别现实世界中的物体。在研究中,我们操纵了所示物体的渲染样式(点云与体素)、渲染分辨率(即点云的密度和体素网格的粒度)、颜色(单色与彩色点/体素)和运动(无运动与旋转运动),以测量这些属性对物体识别性能的影响。对研究结果的统计分析表明,我们的自变量之间存在三向交互作用。进一步分析表明:1)物体渲染为点云时比渲染为体素时更容易识别,尤其是低分辨率体素;2)颜色和运动的效果受物体渲染方式的影响,例如,点云的颜色效用随分辨率降低;3)只有当点被着色且静止时,点云分辨率的提高才会导致物体识别率提高;4)在所有条件下,高分辨率体素的表现优于中低分辨率体素,但中低分辨率体素之间差异不大;5)运动无法提高低中分辨率体素的性能,但能够提高中低分辨率点云的性能。我们的结果对从机器人收集的点云数据创建数字孪生时机器人传感器套件的设计以及数据收集和传输协议具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf2b/9649446/fc627490ec0e/frobt-09-995342-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验