Suppr超能文献

植物干细胞生态位与多能性:表观遗传学视角下的15年

The plant stem-cell niche and pluripotency: 15 years of an epigenetic perspective.

作者信息

Müller-Xing Ralf, Xing Qian

机构信息

Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China.

出版信息

Front Plant Sci. 2022 Oct 31;13:1018559. doi: 10.3389/fpls.2022.1018559. eCollection 2022.

Abstract

Pluripotent stem-cells are slowly dividing cells giving rise to daughter cells that can either differentiate to new tissues and organs, or remain stem-cells. In plants, stem-cells are located in specific niches of the shoot and root apical meristems (SAMs and RAMs). After ablation of stem-cell niches, pluripotent meristematic cells can establish new stem-cells, whereas the removal of the whole meristem destructs the regeneration process. In tissue cultures, after detached plant organs are transferred to rooting or callus induction medium (G5 or CIM), vasculature-associated pluripotent cells (VPCs) immediately start proliferation to form adventitious roots or callus, respectively, while other cell types of the organ explants basically play no part in the process. Hence, in contrast to the widely-held assumption that all plant cells have the ability to reproduce a complete organism, only few cell types are pluripotent in practice, raising the question how pluripotent stem-cells differ from differentiated cells. It is now clear that, in addition to gene regulatory networks of pluripotency factors and phytohormone signaling, epigenetics play a crucial role in initiation, maintenance and determination of plant stem-cells. Although, more and more epigenetic regulators have been shown to control plant stem-cell fate, only a few studies demonstrate how they are recruited and how they change the chromatin structure and transcriptional regulation of pluripotency factors. Here, we highlight recent breakthroughs but also revisited classical studies of epigenetic regulation and chromatin dynamics of plant stem-cells and their pluripotent precursor-cells, and point out open questions and future directions.

摘要

多能干细胞是缓慢分裂的细胞,可产生能分化为新组织和器官的子细胞,或保持为干细胞。在植物中,干细胞位于茎尖分生组织(SAMs)和根尖分生组织(RAMs)的特定微环境中。在干细胞微环境被切除后,多能分生细胞可以建立新的干细胞,而整个分生组织的去除则会破坏再生过程。在组织培养中,将离体的植物器官转移到生根或愈伤组织诱导培养基(G5或CIM)后,与维管系统相关的多能细胞(VPCs)会立即开始增殖,分别形成不定根或愈伤组织,而器官外植体的其他细胞类型在此过程中基本不起作用。因此,与普遍认为所有植物细胞都有能力繁殖完整生物体的假设相反,实际上只有少数细胞类型具有多能性,这就引发了一个问题:多能干细胞与分化细胞有何不同。现在很清楚,除了多能性因子的基因调控网络和植物激素信号传导外,表观遗传学在植物干细胞的起始、维持和决定中起着关键作用。虽然越来越多的表观遗传调节因子已被证明可控制植物干细胞的命运,但只有少数研究表明它们是如何被招募的,以及它们如何改变多能性因子的染色质结构和转录调控。在这里,我们强调了最近的突破,同时也回顾了植物干细胞及其多能前体细胞的表观遗传调控和染色质动力学的经典研究,并指出了悬而未决的问题和未来的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2db/9659954/2bffabdc845c/fpls-13-1018559-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验