Suppr超能文献

用于自动分类骨坏死及相关下颌骨小梁模式的卷积神经网络。

Convolutional neural network for automated classification of osteonecrosis and related mandibular trabecular patterns.

作者信息

Baseri Saadi Soroush, Moreno-Rabié Catalina, van den Wyngaert Tim, Jacobs Reinhilde

机构信息

OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.

Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.

出版信息

Bone Rep. 2022 Oct 29;17:101632. doi: 10.1016/j.bonr.2022.101632. eCollection 2022 Dec.

Abstract

OBJECTIVE

The present study aimed to develop and validate a tool for the automated classification of normal, affected, and osteonecrosis mandibular trabecular bone patterns in panoramic radiographs using convolutional neural networks (CNNs).

METHODS

A dataset of 402 panoramic images from 376 patients was selected, comprising 112 control radiographs from healthy patients and 290 images from patients treated with antiresorptive drugs (ARD). The latter was subdivided in 70 radiographs showing thickening of the lamina dura, 128 with abnormal bone patterns, and 92 images of clinically diagnosed osteonecrosis of the jaw (ONJ). Four pre-trained CNNs were fined-tuned and customized to detect and classify the different bone patterns. The best performing network was selected to develop the classification tool. The output was arranged as a colour-coded risk index showing the category and their odds. Classification performance of the networks was assessed through evaluation metrics, receiver operating characteristic curves (ROC), and a confusion matrix. Furthermore, Gradient-weighted Class Activation Mapping (Grad-CAM) was employed to visualise class-discriminative regions.

RESULTS

All networks correctly detected and classified the mandibular bone patterns with optimal performance metrics. InceptionResNetV2 showed the best results with an accuracy of 96 %, precision, recall and F1-score of 93 %, and a specificity of 98 %. Overall, most misclassifications occurred between normal and abnormal trabecular bone patterns.

CONCLUSION

CNNs offer reliable potentials for automatic classification of abnormalities in the mandibular trabecular bone pattern in panoramic radiographs of antiresorptive treated patients.

CLINICAL SIGNIFICANCE

A novel method that supports clinical decision making by identifying sites at high risk for ONJ.

摘要

目的

本研究旨在开发并验证一种利用卷积神经网络(CNN)对全景X线片中正常、受累及骨坏死的下颌骨小梁骨模式进行自动分类的工具。

方法

选取了来自376例患者的402张全景图像数据集,包括112张健康患者的对照X线片和290张接受抗吸收药物(ARD)治疗患者的图像。后者又细分为70张显示硬骨板增厚的X线片、128张具有异常骨模式的X线片以及92张临床诊断为颌骨骨坏死(ONJ)的图像。对四个预训练的CNN进行微调与定制,以检测和分类不同的骨模式。选择性能最佳的网络来开发分类工具。输出结果以颜色编码的风险指数形式呈现,显示类别及其概率。通过评估指标、受试者操作特征曲线(ROC)和混淆矩阵来评估网络的分类性能。此外,采用梯度加权类激活映射(Grad-CAM)来可视化类别判别区域。

结果

所有网络均以最佳性能指标正确检测和分类了下颌骨模式。InceptionResNetV2表现最佳,准确率为96%,精确率、召回率和F1分数为93%,特异性为98%。总体而言,大多数错误分类发生在正常和异常小梁骨模式之间。

结论

CNN为自动分类抗吸收治疗患者全景X线片中下颌骨小梁骨模式异常提供了可靠的潜力。

临床意义

一种通过识别ONJ高风险部位来支持临床决策的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4228/9640953/0df4ec885ad0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验