Suppr超能文献

基于全景片下颌皮质指数的五种卷积神经网络预测骨质疏松症的比较。

Comparison of five convolutional neural networks for predicting osteoporosis based on mandibular cortical index on panoramic radiographs.

机构信息

Department of Oral and Maxillofacial Radiology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey.

Department of Biomedical Engineering, Pamukkale University, Faculty of Technology, Denizli, Turkey.

出版信息

Dentomaxillofac Radiol. 2022 Sep 1;51(6):20220108. doi: 10.1259/dmfr.20220108. Epub 2022 Jul 6.

Abstract

OBJECTIVES

The aim of the present study was to compare five convolutional neural networks for predicting osteoporosis based on mandibular cortical index (MCI) on panoramic radiographs.

METHODS

Panoramic radiographs of 744 female patients over 50 years of age were labeled as C1, C2, and C3 depending on the MCI. The data of the present study were reviewed in different categories including (C1, C2, C3), (C1, C2), (C1, C3), and (C1, (C2 +C3)) as two-class and three-class predictions. The data were separated randomly as 20% test data, and the remaining data were used for training and validation with fivefold cross-validation. AlexNET, GoogleNET, ResNET-50, SqueezeNET, and ShuffleNET deep-learning models were trained through the transfer learning method. The results were evaluated by performance criteria including accuracy, sensitivity, specificity, F1-score, AUC, and training duration. The Gradient-Weighted Class Activation Mapping (Grad-CAM) method was applied for visual interpretation of where deep-learning algorithms gather the feature from image regions.

RESULTS

The dataset (C1, C2, C3) has an accuracy rate of 81.14% with AlexNET; the dataset (C1, C2) has an accuracy rate of 88.94% with GoogleNET; the dataset (C1, C3) has an accuracy rate of 98.56% with AlexNET; and the dataset (C1,(C2+C3)) has an accuracy rate of 92.79% with GoogleNET.

CONCLUSION

The highest accuracy was obtained in the differentiation of C3 and C1 where osseous structure characteristics change significantly. Since the C2 score represent the intermediate stage (osteopenia), structural characteristics of the bone present behaviors closer to C1 and C3 scores. Therefore, the data set including the C2 score provided relatively lower accuracy results.

摘要

目的

本研究旨在比较五种基于下颌皮质指数(MCI)的全景片预测骨质疏松症的卷积神经网络。

方法

根据 MCI 将 744 名 50 岁以上女性的全景片标记为 C1、C2 和 C3。本研究的数据分为不同类别进行回顾,包括(C1、C2、C3)、(C1、C2)、(C1、C3)和(C1、(C2+C3)),分别为二分类和三分类预测。数据随机分为 20%的测试数据,其余数据用于训练和验证,采用五折交叉验证。通过迁移学习方法训练 AlexNET、GoogleNET、ResNET-50、SqueezeNET 和 ShuffleNET 深度学习模型。通过准确性、敏感性、特异性、F1 评分、AUC 和训练持续时间等性能标准评估结果。应用梯度加权类激活映射(Grad-CAM)方法对深度学习算法从图像区域收集特征的位置进行视觉解释。

结果

数据集(C1、C2、C3)的 AlexNET 准确率为 81.14%;数据集(C1、C2)的 GoogleNET 准确率为 88.94%;数据集(C1、C3)的 AlexNET 准确率为 98.56%;数据集(C1、(C2+C3))的 GoogleNET 准确率为 92.79%。

结论

在 C3 和 C1 的分化中获得了最高的准确性,因为骨结构特征发生了显著变化。由于 C2 评分代表中间阶段(骨质疏松症),骨的结构特征表现出更接近 C1 和 C3 评分的行为。因此,包含 C2 评分的数据集提供的准确性结果相对较低。

相似文献

引用本文的文献

本文引用的文献

10
Machine learning in biomedical engineering.生物医学工程中的机器学习
Biomed Eng Lett. 2018 Feb 6;8(1):1-3. doi: 10.1007/s13534-018-0058-3. eCollection 2018 Feb.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验