BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany.
Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria.
Environ Sci Technol. 2022 Dec 6;56(23):16873-16884. doi: 10.1021/acs.est.2c05602. Epub 2022 Nov 17.
The release of fragments from plastic products, that is, secondary microplastics, is a major concern in the context of the global plastic pollution. Currently available (thermoplastic) polyurethanes [(T)PU] are not biodegradable and therefore should be recycled. However, the ester bond in (T)PUs might be sufficiently hydrolysable to enable at least partial biodegradation of polyurethane particles. Here, we investigated biodegradation in compost of different types of (T)PU to gain insights into their fragmentation and biodegradation mechanisms. The studied (T)PUs varied regarding the chemistry of their polymer backbone (aromatic/aliphatic), hard phase content, cross-linking degree, and presence of a hydrolysis-stabilizing additive. We developed and validated an efficient and non-destructive polymer particle extraction process for partially biodegraded (T)PUs based on ultrasonication and density separation. Our results showed that biodegradation rates and extents decreased with increasing cross-linking density and hard-segment content. We found that the presence of a hydrolysis stabilizer reduced (T)PU fragmentation while not affecting the conversion of (T)PU carbon into CO. We propose a biodegradation mechanism for (T)PUs that includes both mother particle shrinkage by surface erosion and fragmentation. The presented results help to understand structure-degradation relationships of (T)PUs and support recycling strategies.
在全球塑料污染的背景下,塑料制品(即二次微塑料)释放碎片是一个主要关注点。目前可用的(热塑性)聚氨酯[(T)PU]不可生物降解,因此应该回收利用。然而,(T)PUs 中的酯键可能具有足够的水解性,从而使聚氨酯颗粒至少部分生物降解。在这里,我们研究了不同类型的(T)PU 在堆肥中的生物降解情况,以深入了解其碎片化和生物降解机制。所研究的(T)PUs 在聚合物主链的化学性质(芳香族/脂肪族)、硬相含量、交联度以及水解稳定添加剂的存在方面有所不同。我们开发并验证了一种基于超声和密度分离的有效且非破坏性的部分生物降解(T)PU 聚合物颗粒提取方法。我们的结果表明,生物降解速率和程度随着交联密度和硬段含量的增加而降低。我们发现水解稳定剂的存在减少了(T)PU 的碎片化,而不影响(T)PU 碳转化为 CO。我们提出了一种(T)PU 的生物降解机制,包括母体颗粒的表面侵蚀和碎片化。所提出的结果有助于理解(T)PU 的结构降解关系,并支持回收策略。