Palminteri Stefano
Laboratoire de Neurosciences Cognitives et Computationnelles, Departement d'Etudes Cognitives, Ecole Normale Superieure, Paris Sciences et Lettres Research University.
Behav Neurosci. 2023 Feb;137(1):78-88. doi: 10.1037/bne0000541. Epub 2022 Nov 17.
Do we preferentially learn from outcomes that confirm our choices? In recent years, we investigated this question in a series of studies implementing increasingly complex behavioral protocols. The learning rates fitted in experiments featuring partial or complete feedback, as well as free and forced choices, were systematically found to be consistent with a choice-confirmation bias. One of the prominent behavioral consequences of the confirmatory learning rate pattern is choice hysteresis: that is, the tendency of repeating previous choices, despite contradictory evidence. However, choice-confirmatory pattern of learning rates may spuriously arise from not taking into consideration an explicit choice (gradual) perseveration term in the model. In the present study, we reanalyze data from four published papers (nine experiments; 363 subjects; 126,192 trials), originally included in the studies demonstrating or criticizing the choice-confirmation bias in human participants. We fitted two models: one featured valence-specific updates (i.e., different learning rates for confirmatory and disconfirmatory outcomes) and one additionally including gradual perseveration. Our analysis confirms that the inclusion of the gradual perseveration process in the model significantly reduces the estimated choice-confirmation bias. However, in all considered experiments, the choice-confirmation bias remains present at the meta-analytical level, and significantly different from zero in most experiments. Our results demonstrate that the choice-confirmation bias resists the inclusion of a gradual perseveration term, thus proving to be a robust feature of human reinforcement learning. We conclude by pointing to additional computational processes that may play an important role in estimating and interpreting the computational biases under scrutiny. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
我们是否更倾向于从证实我们选择的结果中学习?近年来,我们在一系列实施越来越复杂行为协议的研究中探讨了这个问题。系统地发现,在具有部分或完全反馈以及自由和强制选择的实验中拟合的学习率与选择确认偏差一致。确认性学习率模式的一个突出行为后果是选择滞后:也就是说,尽管有矛盾的证据,仍倾向于重复先前的选择。然而,学习率的选择确认模式可能是由于在模型中没有考虑明确的选择(逐渐的)坚持项而虚假产生的。在本研究中,我们重新分析了四篇已发表论文(九个实验;363名受试者;126,192次试验)的数据,这些数据最初包含在证明或批评人类参与者选择确认偏差的研究中。我们拟合了两个模型:一个具有效价特定更新(即确认性和非确认性结果的不同学习率),另一个额外包括逐渐坚持。我们的分析证实,在模型中纳入逐渐坚持过程显著降低了估计的选择确认偏差。然而,在所有考虑的实验中,选择确认偏差在元分析水平上仍然存在,并且在大多数实验中显著不同于零。我们的结果表明,选择确认偏差不受逐渐坚持项的影响,因此被证明是人类强化学习的一个稳健特征。我们最后指出了可能在估计和解释正在审查的计算偏差中发挥重要作用的其他计算过程。(PsycInfo数据库记录(c)2023美国心理学会,保留所有权利)