Suppr超能文献

探讨超级传播事件在 SARS-CoV-2 暴发中的作用。

Exploring the role of superspreading events in SARS-CoV-2 outbreaks.

机构信息

Department of Mathematics, University of Kansas, Lawrence, KS, United States of America.

Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America.

出版信息

J Theor Biol. 2023 Feb 7;558:111353. doi: 10.1016/j.jtbi.2022.111353. Epub 2022 Nov 14.

Abstract

The novel coronavirus SARS-CoV-2 emerged in 2019 and subsequently spread throughout the world, causing over 600 million cases and 6 million deaths as of September 7th, 2022. Superspreading events (SSEs), defined here as public or social events that result in multiple infections over a short time span, have contributed to SARS-CoV-2 spread. In this work, we compare the dynamics of SSE-dominated SARS-CoV-2 outbreaks, defined here as outbreaks with relatively higher SSE rates, to the dynamics of non-SSE-dominated SARS-CoV-2 outbreaks. To accomplish this, we derive a continuous-time Markov chain (CTMC) SARS-CoV-2 model from an ordinary differential equation (ODE) SARS-CoV-2 model and incorporate SSEs using an events-based framework. We simulate our model under multiple scenarios using Gillespie's direct algorithm. The first scenario excludes hospitalization and quarantine; the second scenario includes hospitalization, quarantine, premature hospital discharge, and quarantine violation; and the third scenario includes hospitalization and quarantine but excludes premature hospital discharge and quarantine violation. We also vary quarantine violation rates. Results indicate that, with either no control or imperfect control, SSE-dominated outbreaks are more variable but less severe than non-SSE-dominated outbreaks, though the most severe SSE-dominated outbreaks are more severe than the most severe non-SSE-dominated outbreaks. We measure severity by the time it takes for 50 active infections to be achieved; more severe outbreaks do so more quickly. SSE-dominated outbreaks are also more sensitive to control measures, with premature hospital discharge and quarantine violation substantially reducing control measure effectiveness.

摘要

新型冠状病毒 SARS-CoV-2 于 2019 年出现,随后在全球范围内传播,截至 2022 年 9 月 7 日,已导致超过 6 亿例病例和 600 多万人死亡。超级传播事件(SSEs),在这里定义为在短时间内导致多人感染的公共或社交事件,促成了 SARS-CoV-2 的传播。在这项工作中,我们将以 SSE 为主导的 SARS-CoV-2 暴发的动态(这里定义为相对较高 SSE 率的暴发)与非 SSE 为主导的 SARS-CoV-2 暴发的动态进行比较。为此,我们从 SARS-CoV-2 的常微分方程(ODE)模型推导出一个连续时间马尔可夫链(CTMC)模型,并使用基于事件的框架将 SSE 纳入其中。我们使用 Gillespie 的直接算法在多种情况下模拟我们的模型。第一种情况排除住院和隔离;第二种情况包括住院、隔离、提前出院和违反隔离规定;第三种情况包括住院和隔离,但不包括提前出院和违反隔离规定。我们还改变了违反隔离规定的比率。结果表明,无论是否存在控制或控制不完美,以 SSE 为主导的暴发比非 SSE 为主导的暴发更具变异性,但更不严重,尽管最严重的以 SSE 为主导的暴发比最严重的非 SSE 为主导的暴发更严重。我们通过达到 50 个活跃感染所需的时间来衡量严重程度;更严重的暴发会更快地达到这一水平。以 SSE 为主导的暴发也对控制措施更为敏感,提前出院和违反隔离规定会大大降低控制措施的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b53/9661548/859eb7db4c2c/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验