Suppr超能文献

隔离与否:行为改变对新冠病毒传播的影响

To isolate or not to isolate: the impact of changing behavior on COVID-19 transmission.

作者信息

Agusto Folashade B, Erovenko Igor V, Fulk Alexander, Abu-Saymeh Qays, Romero-Alvarez Daniel, Ponce Joan, Sindi Suzanne, Ortega Omayra, Saint Onge Jarron M, Peterson A Townsend

机构信息

University of Kansas, Lawrence, 66045, KS, USA.

University of North Carolina at Greensboro, Greensboro, 27412, NC, USA.

出版信息

BMC Public Health. 2022 Jan 20;22(1):138. doi: 10.1186/s12889-021-12275-6.

Abstract

BACKGROUND

The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary compliance by the population. However, humans may act in their (perceived) self-interest only.

METHODS

We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures, and they evolve their strategies using a social learning algorithm (imitation dynamics).

RESULTS

This results in complex interplay between the epidemiological model, which affects success of different strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected individuals is sufficiently high.

CONCLUSIONS

To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior by infected individuals as voluntary self-isolation.

摘要

背景

截至目前,新冠疫情已在全球造成超过2500万例感染和80万人死亡。在疫情初期,针对这种新型冠状病毒既没有疫苗也没有治疗药物。因此,所有预防新冠病毒传播的措施都是基于减少感染者与易感者之间的接触。这些措施中的大多数,如隔离和自我隔离,都需要民众自愿遵守。然而,人类可能只按照自身(认知到的)私利行事。

方法

我们构建了一个将隔离和住院纳入其中的新冠病毒传播数学模型,以及一个适应性人类行为动态博弈模型。易感者和感染者根据对疾病流行程度和负担的认知以及对隔离措施的敏感度采取各种行为策略,并使用社会学习算法(模仿动态)来演变他们的策略。

结果

这导致了流行病学模型(影响不同策略的成效)与博弈论行为模型(反过来影响疾病传播)之间的复杂相互作用。我们发现,在美国观察到的第二波疫情可归因于易感者的理性行为,并且如果感染者的社会学习率足够高,疫情可能会出现多波。

结论

为减轻疾病对社会的负担,有必要激励感染者做出如自愿自我隔离这样的利他行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f49/8772200/73d08d58fa3d/12889_2021_12275_Fig1_HTML.jpg

相似文献

1
To isolate or not to isolate: the impact of changing behavior on COVID-19 transmission.
BMC Public Health. 2022 Jan 20;22(1):138. doi: 10.1186/s12889-021-12275-6.
2
Human choice to self-isolate in the face of the COVID-19 pandemic: A game dynamic modelling approach.
J Theor Biol. 2021 Jul 21;521:110692. doi: 10.1016/j.jtbi.2021.110692. Epub 2021 Mar 23.
3
Could masks curtail the post-lockdown resurgence of COVID-19 in the US?
Math Biosci. 2020 Nov;329:108452. doi: 10.1016/j.mbs.2020.108452. Epub 2020 Aug 18.
5
First Wave of COVID-19 Pandemic in Italy: Data and Evidence.
Adv Exp Med Biol. 2021;1353:91-113. doi: 10.1007/978-3-030-85113-2_6.
7
A Recursive Model of the Spread of COVID-19: Modelling Study.
JMIR Public Health Surveill. 2021 Apr 19;7(4):e21468. doi: 10.2196/21468.
8
Mathematical modeling of COVID-19 transmission: the roles of intervention strategies and lockdown.
Math Biosci Eng. 2020 Sep 10;17(5):5961-5986. doi: 10.3934/mbe.2020318.

引用本文的文献

1
An agent-based model for household COVID-19 transmission in Gauteng, South Africa.
PLoS One. 2025 Jul 16;20(7):e0325619. doi: 10.1371/journal.pone.0325619. eCollection 2025.
3
COVID-19 isolation and quarantine orders in Berlin-Reinickendorf (Germany): How many, how long and to whom?
PLoS One. 2024 Mar 11;19(3):e0271848. doi: 10.1371/journal.pone.0271848. eCollection 2024.
5
Geoepidemiological perspective on COVID-19 pandemic review, an insight into the global impact.
Front Public Health. 2023 Oct 19;11:1242891. doi: 10.3389/fpubh.2023.1242891. eCollection 2023.
6
Attitudinal analysis of vaccination effects to lead endemic phases.
Sci Rep. 2023 Jun 24;13(1):10261. doi: 10.1038/s41598-023-37498-y.
7
Time delay of the appearance of a new strain can affect vaccination behavior and disease dynamics: An evolutionary explanation.
Infect Dis Model. 2023 Sep;8(3):656-671. doi: 10.1016/j.idm.2023.06.001. Epub 2023 Jun 11.
8
Modeling the drivers of oscillations in COVID-19 data on college campuses.
Ann Epidemiol. 2023 Jun;82:40-44. doi: 10.1016/j.annepidem.2023.04.006. Epub 2023 Apr 18.
9
The Impact of Testing Capacity and Compliance With Isolation on COVID-19: A Mathematical Modeling Study.
AJPM Focus. 2022 Sep;1(1):100006. doi: 10.1016/j.focus.2022.100006. Epub 2022 May 20.
10
The interactions of SARS-CoV-2 with cocirculating pathogens: Epidemiological implications and current knowledge gaps.
PLoS Pathog. 2023 Mar 8;19(3):e1011167. doi: 10.1371/journal.ppat.1011167. eCollection 2023 Mar.

本文引用的文献

1
Game analysis on the evolution of COVID-19 epidemic under the prevention and control measures of the government.
PLoS One. 2020 Oct 23;15(10):e0240961. doi: 10.1371/journal.pone.0240961. eCollection 2020.
2
Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics.
Lancet Infect Dis. 2020 Sep;20(9):e238-e244. doi: 10.1016/S1473-3099(20)30484-9. Epub 2020 Jul 3.
3
Airborne Transmission of COVID-19.
Occup Med (Lond). 2020 Jul 17;70(5):297-299. doi: 10.1093/occmed/kqaa080.
5
Implementation of quarantine in China during the outbreak of COVID-19.
Psychiatry Res. 2020 Jul;289:113038. doi: 10.1016/j.psychres.2020.113038. Epub 2020 Apr 30.
6
Respiratory virus shedding in exhaled breath and efficacy of face masks.
Nat Med. 2020 May;26(5):676-680. doi: 10.1038/s41591-020-0843-2. Epub 2020 Apr 3.
7
Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020.
MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):343-346. doi: 10.15585/mmwr.mm6912e2.
8
Can we contain the COVID-19 outbreak with the same measures as for SARS?
Lancet Infect Dis. 2020 May;20(5):e102-e107. doi: 10.1016/S1473-3099(20)30129-8. Epub 2020 Mar 5.
9
Response to COVID-19 in Taiwan: Big Data Analytics, New Technology, and Proactive Testing.
JAMA. 2020 Apr 14;323(14):1341-1342. doi: 10.1001/jama.2020.3151.
10
Mathematical model of Ebola transmission dynamics with relapse and reinfection.
Math Biosci. 2017 Jan;283:48-59. doi: 10.1016/j.mbs.2016.11.002. Epub 2016 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验