Suppr超能文献

SARS-CoV-2 感染超级传播的系统评价和荟萃分析。

Systematic review and meta-analyses of superspreading of SARS-CoV-2 infections.

机构信息

Li Ka Shing Faculty of Medicine, WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China.

Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.

出版信息

Transbound Emerg Dis. 2022 Sep;69(5):e3007-e3014. doi: 10.1111/tbed.14655. Epub 2022 Jul 18.

Abstract

Superspreading, or overdispersion in transmission, is a feature of SARS-CoV-2 transmission which results in surging epidemics and large clusters of infection. The dispersion parameter is a statistical parameter used to characterize and quantify heterogeneity. In the context of measuring transmissibility, it is analogous to measures of superspreading potential among populations by assuming that collective offspring distribution follows a negative-binomial distribution. We conducted a systematic review and meta-analysis on globally reported dispersion parameters of SARS-CoV-2 infection. All searches were carried out on 10 September 2021 in PubMed for articles published from 1 January 2020 to 10 September 2021. Multiple estimates of the dispersion parameter have been published for 17 studies, which could be related to where and when the data were obtained, in 8 countries (e.g. China, the United States, India, Indonesia, Israel, Japan, New Zealand and Singapore). High heterogeneity was reported among the included studies. The mean estimates of dispersion parameters range from 0.06 to 2.97 over eight countries, the pooled estimate was 0.55 (95% CI: 0.30, 0.79), with changing means over countries and decreasing slightly with the increasing reproduction number. The expected proportion of cases accounting for 80% of all transmissions is 19% (95% CrI: 7, 34) globally. The study location and method were found to be important drivers for diversity in estimates of dispersion parameters. While under high potential of superspreading, larger outbreaks could still occur with the import of the COVID-19 virus by traveling even when an epidemic seems to be under control.

摘要

超级传播,或传播中的过离散,是 SARS-CoV-2 传播的一个特征,导致疫情激增和大规模感染集群。离散参数是一个用于描述和量化异质性的统计参数。在衡量传染性的背景下,它类似于通过假设群体后代分布遵循负二项分布来衡量人群中的超级传播潜力的度量。我们对全球报告的 SARS-CoV-2 感染离散参数进行了系统评价和荟萃分析。所有搜索均于 2021 年 9 月 10 日在 PubMed 上进行,以检索 2020 年 1 月 1 日至 2021 年 9 月 10 日期间发表的文章。17 项研究发表了多个离散参数估计值,这些估计值可能与数据获取的地点和时间有关,涉及 8 个国家(例如中国、美国、印度、印度尼西亚、以色列、日本、新西兰和新加坡)。纳入的研究报告存在高度异质性。离散参数的平均估计值在八个国家的范围从 0.06 到 2.97,汇总估计值为 0.55(95%CI:0.30,0.79),随着国家的变化而变化,随着繁殖数的增加而略有下降。预计占所有传播病例的 80%的病例比例为 19%(95%CrI:7,34),全球范围内。研究地点和方法被发现是离散参数估计值多样性的重要驱动因素。虽然存在超级传播的高潜力,但即使在疫情似乎得到控制的情况下,通过旅行输入 COVID-19 病毒仍可能导致更大的疫情爆发。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验