Department of Biochemistry, University of Oxford, Oxford, UK.
EMBO Rep. 2023 Jan 9;24(1):e55640. doi: 10.15252/embr.202255640. Epub 2022 Nov 17.
Understanding the interplay between phenotypic and genetic adaptation is a focus of evolutionary biology. In bacteria, the oxidative stress response prevents mutagenesis by reactive oxygen species (ROS). We hypothesise that the stress response dynamics can therefore affect the timing of the mutation supply that fuels genetic adaptation to oxidative stress. We uncover that sudden hydrogen peroxide stress causes a burst of mutations. By developing single-molecule and single-cell microscopy methods, we determine how these mutation dynamics arise from phenotypic adaptation mechanisms. H O signalling by the transcription factor OxyR rapidly induces ROS-scavenging enzymes. However, an adaptation delay leaves cells vulnerable to the mutagenic and toxic effects of hydroxyl radicals generated by the Fenton reaction. Resulting DNA damage is counteracted by a spike in DNA repair activities during the adaptation delay. Absence of a mutation burst in cells with prior stress exposure or constitutive OxyR activation shows that the timing of phenotypic adaptation directly controls stress-induced mutagenesis. Similar observations for alkylation stress show that mutation bursts are a general phenomenon associated with adaptation delays.
理解表型和遗传适应性之间的相互作用是进化生物学的一个重点。在细菌中,氧化应激反应通过活性氧 (ROS) 防止突变。我们假设,因此,应激反应动力学可以影响为氧化应激的遗传适应性提供燃料的突变供应的时间。我们发现,过氧化氢应激会突然引起突变爆发。通过开发单分子和单细胞显微镜方法,我们确定了这些突变动态如何从表型适应机制中产生。转录因子 OxyR 的 H 2 O 信号迅速诱导 ROS 清除酶。然而,适应延迟会使细胞容易受到由芬顿反应产生的羟基自由基的诱变和毒性影响。在适应延迟期间,DNA 修复活性的激增抵消了由此产生的 DNA 损伤。先前有应激暴露或组成型 OxyR 激活的细胞中没有突变爆发表明,表型适应的时间直接控制应激诱导的突变。烷基化应激的类似观察结果表明,突变爆发是与适应延迟相关的普遍现象。