Suppr超能文献

择期脊柱手术住院时间和出院去向的预测模型:开发、验证以及与 ACS NSQIP 风险计算器的比较。

Predictive Models for Length of Stay and Discharge Disposition in Elective Spine Surgery: Development, Validation, and Comparison to the ACS NSQIP Risk Calculator.

机构信息

Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA.

Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA.

出版信息

Spine (Phila Pa 1976). 2023 Jan 1;48(1):E1-E13. doi: 10.1097/BRS.0000000000004490. Epub 2022 Oct 17.

Abstract

STUDY DESIGN

A retrospective study at a single academic institution.

OBJECTIVE

The purpose of this study is to utilize machine learning to predict hospital length of stay (LOS) and discharge disposition following adult elective spine surgery, and to compare performance metrics of machine learning models to the American College of Surgeon's National Surgical Quality Improvement Program's (ACS NSQIP) prediction calculator.

SUMMARY OF BACKGROUND DATA

A total of 3678 adult patients undergoing elective spine surgery between 2014 and 2019, acquired from the electronic health record.

METHODS

Patients were divided into three stratified cohorts: cervical degenerative, lumbar degenerative, and adult spinal deformity groups. Predictive variables included demographics, body mass index, surgical region, surgical invasiveness, surgical approach, and comorbidities. Regression, classification trees, and least absolute shrinkage and selection operator (LASSO) were used to build predictive models. Validation of the models was conducted on 16% of patients (N=587), using area under the receiver operator curve (AUROC), sensitivity, specificity, and correlation. Patient data were manually entered into the ACS NSQIP online risk calculator to compare performance. Outcome variables were discharge disposition (home vs. rehabilitation) and LOS (days).

RESULTS

Of 3678 patients analyzed, 51.4% were male (n=1890) and 48.6% were female (n=1788). The average LOS was 3.66 days. In all, 78% were discharged home and 22% discharged to rehabilitation. Compared with NSQIP (Pearson R2 =0.16), the predictions of poisson regression ( R2 =0.29) and LASSO ( R2 =0.29) models were significantly more correlated with observed LOS ( P =0.025 and 0.004, respectively). Of the models generated to predict discharge location, logistic regression yielded an AUROC of 0.79, which was statistically equivalent to the AUROC of 0.75 for NSQIP ( P =0.135).

CONCLUSION

The predictive models developed in this study can enable accurate preoperative estimation of LOS and risk of rehabilitation discharge for adult patients undergoing elective spine surgery. The demonstrated models exhibited better performance than NSQIP for prediction of LOS and equivalent performance to NSQIP for prediction of discharge location.

摘要

研究设计

单中心回顾性研究。

目的

本研究旨在利用机器学习预测成人择期脊柱手术后的住院时间( LOS )和出院去向,并比较机器学习模型的性能指标与美国外科医师学会全国手术质量改进计划( ACS NSQIP )预测计算器。

背景资料总结

总共纳入了 2014 年至 2019 年期间从电子健康记录中获得的 3678 名接受择期脊柱手术的成年患者。

方法

患者分为颈椎退行性变、腰椎退行性变和成人脊柱畸形三组。预测变量包括人口统计学、体重指数、手术部位、手术侵袭性、手术入路和合并症。使用回归、分类树和最小绝对值收缩和选择算子( LASSO )构建预测模型。使用受试者工作特征曲线下面积(AUROC )、灵敏度、特异性和相关性对 16%的患者( N =587 )进行模型验证。患者数据手动输入到 ACS NSQIP 在线风险计算器中以比较性能。结局变量为出院去向(居家 vs. 康复)和 LOS (天)。

结果

在分析的 3678 名患者中, 51.4%为男性( n =1890 ), 48.6%为女性( n =1788 )。平均 LOS 为 3.66 天。总共 78%的患者出院回家, 22%的患者出院到康复机构。与 NSQIP 相比( Pearson R2 =0.16 ),泊松回归( R2 =0.29 )和 LASSO ( R2 =0.29 )模型的预测与观察到的 LOS 显著更相关( P =0.025 和 0.004 )。在生成的用于预测出院地点的模型中,逻辑回归的 AUROC 为 0.79 ,与 NSQIP 的 AUROC 0.75 ( P =0.135 )统计学等效。

结论

本研究中开发的预测模型可实现成人择期脊柱手术患者 LOS 和康复出院风险的术前准确估计。所展示的模型在预测 LOS 方面的性能优于 NSQIP ,在预测出院地点方面的性能与 NSQIP 相当。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验