Suppr超能文献

深度学习系统用于稻田病害检测与分类。

Deep learning system for paddy plant disease detection and classification.

机构信息

Department of Computer Science and Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India.

出版信息

Environ Monit Assess. 2022 Nov 18;195(1):120. doi: 10.1007/s10661-022-10656-x.

Abstract

Automatic detection and analysis of rice crop diseases is widely required in the farming industry, which can be utilized to avoid squandering financial and other resources, reduce yield losses, and improve treatment efficiency, resulting in healthier crop output. An automated approach was proposed for accurately detecting and classifying diseases from a supplied photograph. The proposed system for the recognition of rice plant diseases adopts a computer vision-based approach that employs the techniques of image processing, machine learning, and deep learning, reducing the reliance on conventional methods to protect paddy crops from diseases like bacterial leaf blight, false smut, brown leaf spot, rice blast, and sheath rot, the five primary diseases that frequently plague the Indian rice fields. Following image pre-processing, image segmentation is employed to determine the diseased section of the paddy plant, with the diseases listed above being identified purely on the basis of their visual contents. An integration of a support vector machine classifier and convolutional neural networks are used to recognize and classify specific varieties of paddy plant diseases. With ReLU and softmax functions, the suggested deep learning-based strategy attained the highest validation accuracy of 0.9145. Following recognition, a predictive remedy is recommended, which can assist agriculture-related individuals and organizations in taking suitable measures to combat these diseases.

摘要

在农业领域,广泛需要自动检测和分析水稻作物病害,这可以避免浪费财力和其他资源,减少产量损失,并提高治疗效率,从而获得更健康的作物产量。本文提出了一种从提供的照片中准确检测和分类疾病的自动方法。所提出的水稻病害识别系统采用基于计算机视觉的方法,利用图像处理、机器学习和深度学习技术,减少对传统方法的依赖,以保护水稻作物免受细菌性叶斑病、假黑粉病、褐斑病、稻瘟病和纹枯病等五种主要病害的侵害,这些病害经常困扰着印度的稻田。在图像预处理之后,采用图像分割来确定水稻植株的患病部分,仅根据其视觉内容来识别上述疾病。支持向量机分类器和卷积神经网络的集成用于识别和分类特定品种的水稻病害。所提出的基于深度学习的策略使用 ReLU 和 softmax 函数,达到了最高的验证准确性 0.9145。识别后,建议采用预测性补救措施,这可以帮助农业相关个人和组织采取适当措施来防治这些疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验