文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度卷积神经网络的水稻病虫害视频检测识别方法。

A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network.

机构信息

Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.

出版信息

Sensors (Basel). 2020 Jan 21;20(3):578. doi: 10.3390/s20030578.


DOI:10.3390/s20030578
PMID:31973039
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7038217/
Abstract

Increasing grain production is essential to those areas where food is scarce. Increasing grain production by controlling crop diseases and pests in time should be effective. To construct video detection system for plant diseases and pests, and to build a real-time crop diseases and pests video detection system in the future, a deep learning-based video detection architecture with a custom backbone was proposed for detecting plant diseases and pests in videos. We first transformed the video into still frame, then sent the frame to the still-image detector for detection, and finally synthesized the frames into video. In the still-image detector, we used faster-RCNN as the framework. We used image-training models to detect relatively blurry videos. Additionally, a set of video-based evaluation metrics based on a machine learning classifier was proposed, which reflected the quality of video detection effectively in the experiments. Experiments showed that our system with the custom backbone was more suitable for detection of the untrained rice videos than VGG16, ResNet-50, ResNet-101 backbone system and YOLOv3 with our experimental environment.

摘要

增加粮食产量对于那些粮食短缺的地区来说至关重要。通过及时控制作物病虫害来增加粮食产量应该是有效的。为了构建植物病虫害的视频检测系统,并在未来构建实时作物病虫害视频检测系统,提出了一种基于深度学习的具有自定义骨干的视频检测架构,用于检测视频中的植物病虫害。我们首先将视频转换为静态帧,然后将帧发送到静态图像检测器进行检测,最后将帧合成到视频中。在静态图像检测器中,我们使用更快的 RCNN 作为框架。我们使用图像训练模型来检测相对模糊的视频。此外,还提出了一组基于机器学习分类器的视频评估指标,这些指标在实验中有效地反映了视频检测的质量。实验表明,与 VGG16、ResNet-50、ResNet-101 骨干系统和在我们的实验环境下使用的 YOLOv3 相比,具有自定义骨干的我们的系统更适合检测未经训练的水稻视频。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/fc64872831d1/sensors-20-00578-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/1d8563501385/sensors-20-00578-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/5937a9b04485/sensors-20-00578-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/34ea526f86fd/sensors-20-00578-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/413469989cae/sensors-20-00578-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/5772c0cc7d83/sensors-20-00578-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/101b94c05657/sensors-20-00578-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/a5d552c52ae4/sensors-20-00578-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/a00395fcdd8d/sensors-20-00578-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/69d0f71d7a96/sensors-20-00578-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/ba1b4b58c849/sensors-20-00578-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/fc64872831d1/sensors-20-00578-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/1d8563501385/sensors-20-00578-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/5937a9b04485/sensors-20-00578-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/34ea526f86fd/sensors-20-00578-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/413469989cae/sensors-20-00578-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/5772c0cc7d83/sensors-20-00578-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/101b94c05657/sensors-20-00578-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/a5d552c52ae4/sensors-20-00578-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/a00395fcdd8d/sensors-20-00578-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/69d0f71d7a96/sensors-20-00578-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/ba1b4b58c849/sensors-20-00578-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4b/7038217/fc64872831d1/sensors-20-00578-g011.jpg

相似文献

[1]
A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network.

Sensors (Basel). 2020-1-21

[2]
A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

Sensors (Basel). 2017-9-4

[3]
Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks.

Sensors (Basel). 2020-2-17

[4]
EResNet-SVM: an overfitting-relieved deep learning model for recognition of plant diseases and pests.

J Sci Food Agric. 2024-8-15

[5]
Deep Manifold Learning Combined With Convolutional Neural Networks for Action Recognition.

IEEE Trans Neural Netw Learn Syst. 2017-9-15

[6]
Rice leaf diseases prediction using deep neural networks with transfer learning.

Environ Res. 2021-7

[7]
Co-Saliency-Enhanced Deep Recurrent Convolutional Networks for Human Fall Detection in E-Healthcare.

Annu Int Conf IEEE Eng Med Biol Soc. 2018-7

[8]
Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.

JAMA Netw Open. 2019-4-5

[9]
Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization.

Comput Math Methods Med. 2019-9-18

[10]
A Convolutional Neural Network for Real Time Classification, Identification, and Labelling of Vocal Cord and Tracheal Using Laryngoscopy and Bronchoscopy Video.

J Med Syst. 2020-1-2

引用本文的文献

[1]
Multiple model visual feature embedding and selection method for an efficient pest classification supporting precision agriculture.

Sci Rep. 2025-8-29

[2]
Rice Canopy Disease and Pest Identification Based on Improved YOLOv5 and UAV Images.

Sensors (Basel). 2025-6-30

[3]
Rice Disease Detection: TLI-YOLO Innovative Approach for Enhanced Detection and Mobile Compatibility.

Sensors (Basel). 2025-4-15

[4]
Multi-kernel inception aggregation diffusion network for tomato disease detection.

BMC Plant Biol. 2024-11-13

[5]
Advancements in rice disease detection through convolutional neural networks: A comprehensive review.

Heliyon. 2024-6-19

[6]
An ensemble deep learning models approach using image analysis for cotton crop classification in AI-enabled smart agriculture.

Plant Methods. 2024-7-14

[7]
Comparative Field Evaluation and Transcriptome Analysis Reveals that Chromosome Doubling Enhances Sheath Blight Resistance in Rice.

Rice (N Y). 2024-7-3

[8]
A review of artificial intelligence-assisted omics techniques in plant defense: current trends and future directions.

Front Plant Sci. 2024-3-5

[9]
Cloning of maize chitinase 1 gene and its expression in genetically transformed rice to confer resistance against rice blast caused by Pyricularia oryzae.

PLoS One. 2024

[10]
Convolutional neural network in rice disease recognition: accuracy, speed and lightweight.

Front Plant Sci. 2023-11-1

本文引用的文献

[1]
Automated Image Analysis of the Severity of Foliar Citrus Canker Symptoms.

Plant Dis. 2009-6

[2]
Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.

Plant Dis. 2016-2

[3]
Leaf Doctor: A New Portable Application for Quantifying Plant Disease Severity.

Plant Dis. 2015-10

[4]
A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

Sensors (Basel). 2017-9-4

[5]
Spatio-Temporal Closed-Loop Object Detection.

IEEE Trans Image Process. 2017-1-10

[6]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[7]
Image-based phenotyping of plant disease symptoms.

Front Plant Sci. 2015-1-5

[8]
Measuring quantitative virulence in the wheat pathogen Zymoseptoria tritici using high-throughput automated image analysis.

Phytopathology. 2014-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索