High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria.
Hum Brain Mapp. 2023 Feb 15;44(3):1209-1226. doi: 10.1002/hbm.26152. Epub 2022 Nov 19.
Of the sources of noise affecting blood oxygen level-dependent functional magnetic resonance imaging (fMRI), respiration and cardiac fluctuations are responsible for the largest part of the variance, particularly at high and ultrahigh field. Existing approaches to removing physiological noise either use external recordings, which can be unwieldy and unreliable, or attempt to identify physiological noise from the magnitude fMRI data. Data-driven approaches are limited by sensitivity, temporal aliasing, and the need for user interaction. In the light of the sensitivity of the phase of the MR signal to local changes in the field stemming from physiological processes, we have developed an unsupervised physiological noise correction method using the information carried in the phase and the magnitude of echo-planar imaging data. Our technique, Physiological Regressor Estimation from Phase and mAgnItude, sub-tR (PREPAIR) derives time series signals sampled at the slice TR from both phase and magnitude images. It allows physiological noise to be captured without aliasing, and efficiently removes other sources of signal fluctuations not related to physiology, prior to regressor estimation. We demonstrate that the physiological signal time courses identified with PREPAIR agree well with those from external devices and retrieve challenging cardiac dynamics. The removal of physiological noise was as effective as that achieved with the most used approach based on external recordings, RETROICOR. In comparison with widely used recording-free physiological noise correction tools-PESTICA and FIX, both performed in unsupervised mode-PREPAIR removed significantly more respiratory and cardiac noise than PESTICA, and achieved a larger increase in temporal signal-to-noise-ratio at both 3 and 7 T.
在影响血氧水平依赖功能磁共振成像(fMRI)的噪声源中,呼吸和心脏波动是造成大部分变化的主要原因,尤其是在高场和超高场。现有的去除生理噪声的方法要么使用外部记录,这可能很麻烦且不可靠,要么试图从 fMRI 数据的幅度中识别生理噪声。数据驱动的方法受到灵敏度、时间混淆和用户交互的需求的限制。鉴于 MR 信号相位对源自生理过程的局部磁场变化的敏感性,我们已经开发了一种使用相位和回波平面成像数据的幅度携带的信息来进行无监督生理噪声校正的方法。我们的技术,相位和幅度的生理回归估计,子 TR(PREPAIR)从相位和幅度图像中提取在切片 TR 处采样的时间序列信号。它允许在进行回归估计之前,无混淆地捕获生理噪声,并有效地去除与生理学无关的其他信号波动源。我们证明,与外部设备识别的生理信号时间过程一致,并恢复具有挑战性的心脏动力学。PREPAIR 去除生理噪声的效果与基于外部记录的最常用方法 RETROICOR 一样有效。与广泛使用的无记录生理噪声校正工具 PESTICA 和 FIX 相比,PREPAIR 以无监督模式执行,与 PESTICA 相比,它去除了更多的呼吸和心脏噪声,并且在 3 和 7 T 下都提高了更大的时间信号噪声比。