Matty Michael, Kim Eun-Ah
Department of Physics, Cornell University, Ithaca, NY, 14853, USA.
Nat Commun. 2022 Nov 19;13(1):7098. doi: 10.1038/s41467-022-34683-x.
Moiré superlattice systems such as transition metal dichalcogenide heterobilayers have garnered significant recent interest due to their promising utility as tunable solid state simulators. Recent experiments on a WSe/WS heterobilayer detected incompressible charge ordered states that one can view as generalized Wigner crystals. The tunability of the transition metal dichalcogenide heterobilayer Moiré system presents an opportunity to study the rich set of possible phases upon melting these charge-ordered states. Here we use Monte Carlo simulations to study these intermediate phases in between incompressible charge-ordered states in the strong coupling limit. We find two distinct stripe solid states to be each preceded by distinct types of nematic states. In particular, we discover microscopic mechanisms that stabilize each of the nematic states, whose order parameter transforms as the two-dimensional E representation of the Moiré lattice point group. Our results provide a testable experimental prediction of where both types of nematic occur, and elucidate the microscopic mechanism driving their formation.
诸如过渡金属二硫属化物异质双层之类的莫尔超晶格系统,因其作为可调谐固态模拟器的潜在用途,最近引起了广泛关注。最近对WSe₂/WS₂异质双层的实验检测到了不可压缩的电荷有序态,人们可以将其视为广义的维格纳晶体。过渡金属二硫属化物异质双层莫尔系统的可调谐性,为研究这些电荷有序态熔化后丰富的可能相提供了契机。在此,我们使用蒙特卡罗模拟来研究强耦合极限下不可压缩电荷有序态之间的这些中间相。我们发现两种不同的条纹固态之前分别有不同类型的向列态。特别地,我们发现了稳定每种向列态的微观机制,其序参量按照莫尔晶格点群的二维E表示进行变换。我们的结果提供了关于两种向列态出现位置的可测试实验预测,并阐明了驱动它们形成的微观机制。