Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Department of Physics, Harvard University, Cambridge, MA, USA.
Nature. 2021 Jul;595(7865):48-52. doi: 10.1038/s41586-021-03560-w. Epub 2021 Jun 30.
One of the first theoretically predicted manifestations of strong interactions in many-electron systems was the Wigner crystal, in which electrons crystallize into a regular lattice. The crystal can melt via either thermal or quantum fluctuations. Quantum melting of the Wigner crystal is predicted to produce exotic intermediate phases and quantum magnetism because of the intricate interplay of Coulomb interactions and kinetic energy. However, studying two-dimensional Wigner crystals in the quantum regime has often required a strong magnetic field or a moiré superlattice potential, thus limiting access to the full phase diagram of the interacting electron liquid. Here we report the observation of bilayer Wigner crystals without magnetic fields or moiré potentials in an atomically thin transition metal dichalcogenide heterostructure, which consists of two MoSe monolayers separated by hexagonal boron nitride. We observe optical signatures of robust correlated insulating states at symmetric (1:1) and asymmetric (3:1, 4:1 and 7:1) electron doping of the two MoSe layers at cryogenic temperatures. We attribute these features to bilayer Wigner crystals composed of two interlocked commensurate triangular electron lattices, stabilized by inter-layer interaction. The Wigner crystal phases are remarkably stable, and undergo quantum and thermal melting transitions at electron densities of up to 6 × 10 per square centimetre and at temperatures of up to about 40 kelvin. Our results demonstrate that an atomically thin heterostructure is a highly tunable platform for realizing many-body electronic states and probing their liquid-solid and magnetic quantum phase transitions.
多电子系统中强相互作用的最早理论预测之一是维格纳晶体,其中电子结晶成规则晶格。晶体可以通过热或量子涨落而熔化。由于库仑相互作用和动能的复杂相互作用,预测维格纳晶体的量子熔化将产生奇异的中间相和量子磁体。然而,在量子 regime 中研究二维维格纳晶体通常需要强磁场或莫尔超晶格势,从而限制了对相互作用电子液体的完整相图的访问。在这里,我们报告了在原子薄的过渡金属二卤化物异质结构中没有磁场或莫尔势的双层维格纳晶体的观察结果,该异质结构由两个 MoSe 单层通过六方氮化硼隔开。我们在低温下观察到两个 MoSe 层的对称(1:1)和不对称(3:1、4:1 和 7:1)电子掺杂时,具有稳健相关绝缘状态的光学特征。我们将这些特征归因于由两个互锁的共形三角形电子晶格组成的双层维格纳晶体,其由层间相互作用稳定。维格纳晶体相非常稳定,在电子密度高达每平方厘米 6×10 和温度高达约 40 开尔文时经历量子和热熔化转变。我们的结果表明,原子薄的异质结构是实现多体电子态并探测其液体-固体和磁量子相变的高度可调平台。