Li Hongyuan, Xiang Ziyu, Regan Emma, Zhao Wenyu, Sailus Renee, Banerjee Rounak, Taniguchi Takashi, Watanabe Kenji, Tongay Sefaattin, Zettl Alex, Crommie Michael F, Wang Feng
Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA.
Nat Nanotechnol. 2024 May;19(5):618-623. doi: 10.1038/s41565-023-01594-x. Epub 2024 Jan 29.
Transition metal dichalcogenide-based moiré superlattices exhibit strong electron-electron correlations, thus giving rise to strongly correlated quantum phenomena such as generalized Wigner crystal states. Evidence of Wigner crystals in transition metal dichalcogenide moire superlattices has been widely reported from various optical spectroscopy and electrical conductivity measurements, while their microscopic nature has been limited to the basic lattice structure. Theoretical studies predict that unusual quasiparticle excitations across the correlated gap between upper and lower Hubbard bands can arise due to long-range Coulomb interactions in generalized Wigner crystal states. However, the microscopic proof of such quasiparticle excitations is challenging because of the low excitation energy of the Wigner crystal. Here we describe a scanning single-electron charging spectroscopy technique with nanometre spatial resolution and single-electron charge resolution that enables us to directly image electron and hole wavefunctions and to determine the thermodynamic gap of generalized Wigner crystal states in twisted WS moiré heterostructures. High-resolution scanning single-electron charging spectroscopy combines scanning tunnelling microscopy with a monolayer graphene sensing layer, thus enabling the generation of individual electron and hole quasiparticles in generalized Wigner crystals. We show that electron and hole quasiparticles have complementary wavefunction distributions and that thermodynamic gaps of ∼50 meV exist for the 1/3 and 2/3 generalized Wigner crystal states in twisted WS.
基于过渡金属二硫属化物的莫尔超晶格表现出强电子-电子关联,从而产生诸如广义维格纳晶体态等强关联量子现象。过渡金属二硫属化物莫尔超晶格中维格纳晶体的证据已通过各种光谱学和电导率测量广泛报道,而其微观性质仅限于基本晶格结构。理论研究预测,由于广义维格纳晶体态中的长程库仑相互作用,可能会在上、下哈伯德带之间的相关能隙上出现异常的准粒子激发。然而,由于维格纳晶体的激发能量较低,这种准粒子激发的微观证据具有挑战性。在这里,我们描述了一种具有纳米空间分辨率和单电子电荷分辨率的扫描单电子充电光谱技术,该技术使我们能够直接成像电子和空穴波函数,并确定扭曲的WS莫尔异质结构中广义维格纳晶体态的热力学能隙。高分辨率扫描单电子充电光谱将扫描隧道显微镜与单层石墨烯传感层相结合,从而能够在广义维格纳晶体中产生单个电子和空穴准粒子。我们表明,电子和空穴准粒子具有互补的波函数分布,并且在扭曲的WS中,1/3和2/3广义维格纳晶体态存在约50 meV的热力学能隙。