Suppr超能文献

将转录因子结合与转录组全关联分析相结合,确定人类癌症中的易感基因。

Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers.

机构信息

Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada.

Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.

出版信息

Nat Commun. 2022 Nov 19;13(1):7118. doi: 10.1038/s41467-022-34888-0.

Abstract

Transcriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription factor occupied elements, we develop sTF-TWAS and demonstrate that it outperforms existing TWAS approaches in both simulation and real data analyses. Under the sTF-TWAS framework, we build genetic models to predict alternative splicing and gene expression in normal breast, prostate and lung tissues from the Genotype-Tissue Expression project and apply these models to data from large genome-wide association studies (GWAS) conducted among European-ancestry populations. At Bonferroni-corrected P < 0.05, we identify 354 putative susceptibility genes for these cancers, including 189 previously unreported in GWAS loci and 45 in loci unreported by GWAS. These findings provide additional insight into the genetic susceptibility of human cancers. Additionally, we show the generalizability of the sTF-TWAS on non-cancer diseases.

摘要

转录组关联研究 (TWAS) 已经成功地发现了许多潜在的疾病易感基因。然而,由于包含非调控变异,TWAS 可能会因基因表达预测的不准确而受到影响。通过整合易感转录因子占据元件的先验知识,我们开发了 sTF-TWAS,并在模拟和真实数据分析中证明它优于现有的 TWAS 方法。在 sTF-TWAS 框架下,我们构建了遗传模型来预测来自基因型组织表达项目的正常乳腺、前列腺和肺部组织中的选择性剪接和基因表达,并将这些模型应用于欧洲血统人群中进行的大型全基因组关联研究 (GWAS) 数据。在 Bonferroni 校正的 P < 0.05 下,我们确定了这些癌症的 354 个潜在易感性基因,其中包括 189 个之前在 GWAS 位点中未报告的基因和 45 个在 GWAS 中未报告的基因。这些发现为人类癌症的遗传易感性提供了更多的见解。此外,我们还展示了 sTF-TWAS 在非癌症疾病中的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f132/9675749/862d00199c36/41467_2022_34888_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验