He Jingni, Perera Deshan, Wen Wanqing, Ping Jie, Li Qing, Lyu Linshuoshuo, Chen Zhishan, Shu Xiang, Long Jirong, Cai Qiuyin, Shu Xiao-Ou, Yin Zhijun, Zheng Wei, Long Quan, Guo Xingyi
Department of Biochemistry & Molecular Biology, University of Calgary, HMRB 231, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1035.
Transcriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-variants to enhance model building for TF downstream target genes. Using data from the Genotype-Tissue Expression project, we predict gene expression and alternative splicing and applied these prediction models to large GWAS datasets for breast, prostate, lung cancers and other diseases. We demonstrate that transTF-TWAS outperforms other existing TWAS approaches in both constructing gene expression prediction models and identifying disease-associated genes, as shown by simulations and real data analysis. Our transTF-TWAS approach significantly contributes to the discovery of disease risk genes. Findings from this study shed new light on several genetically driven key TF regulators and their associated TF-gene regulatory networks underlying disease susceptibility.
全转录组关联研究(TWAS)通过将预测基因表达的顺式变体与全基因组关联研究(GWAS)数据相结合,成功地鉴定出了疾病易感基因。然而,用于预测基因表达的反式变体在很大程度上仍未得到充分探索。在此,我们引入了反式转录因子-TWAS(transTF-TWAS),它整合了与转录因子(TF)相关的反式变体,以增强TF下游靶基因的模型构建。利用基因型-组织表达项目的数据,我们预测基因表达和可变剪接,并将这些预测模型应用于乳腺癌、前列腺癌、肺癌和其他疾病的大型GWAS数据集。我们证明,如模拟和实际数据分析所示,transTF-TWAS在构建基因表达预测模型和鉴定疾病相关基因方面均优于其他现有的TWAS方法。我们的transTF-TWAS方法对疾病风险基因的发现做出了重大贡献。这项研究的结果为几个由基因驱动的关键TF调节因子及其潜在疾病易感性的相关TF-基因调控网络提供了新的线索。