Suppr超能文献

理想的电流偶极子是模拟颅内记录神经元的合适源表示。

Ideal current dipoles are appropriate source representations for simulating neurons for intracranial recordings.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, United States.

Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States; Department of Neurobiology, Duke University, Durham, NC, United States; Department of Neurosurgery, Duke University, Durham, NC, United States.

出版信息

Clin Neurophysiol. 2023 Jan;145:26-35. doi: 10.1016/j.clinph.2022.11.002. Epub 2022 Nov 9.

Abstract

OBJECTIVE

To determine whether dipoles are an appropriate simplified representation of neural sources for stereo-EEG (sEEG).

METHODS

We compared the distributions of voltages generated by a dipole, biophysically realistic cortical neuron models, and extended regions of cortex to determine how well a dipole represented neural sources at different spatial scales and at electrode to neuron distances relevant for sEEG. We also quantified errors introduced by the dipole approximation of neural sources in sEEG source localization using standardized low-resolution electrotomography (sLORETA).

RESULTS

For pyramidal neurons, the coefficient of correlation between voltages generated by a dipole and neuron model were > 0.9 for distances > 1 mm. For small regions of cortex (∼0.1 cm), the error in voltages between a dipole and region was < 100 µV for all distances. However, larger regions of active cortex (>5 cm) yielded > 50 µV errors within 1.5 cm of an electrode when compared to single dipoles. Finally, source localization errors were < 5 mm when using dipoles to represent realistic neural sources.

CONCLUSIONS

Single dipoles are an appropriate source model to represent both single neurons and small regions of active cortex, while multiple dipoles are required to represent large regions of cortex.

SIGNIFICANCE

Dipoles are computationally tractable and valid source models for sEEG.

摘要

目的

确定偶极子是否是立体脑电图(sEEG)神经源的合适简化表示。

方法

我们比较了偶极子、生物物理上逼真的皮质神经元模型和扩展的皮质区域产生的电压分布,以确定偶极子在不同空间尺度和与 sEEG 相关的电极到神经元距离下如何很好地表示神经源。我们还通过标准化低分辨率电层析成像(sLORETA)量化了 sEEG 源定位中神经源的偶极子近似引入的误差。

结果

对于锥形神经元,偶极子和神经元模型产生的电压之间的相关系数>0.9,距离>1mm。对于小的皮质区域(约 0.1cm),对于所有距离,偶极子和区域之间的电压误差<100µV。然而,与单个偶极子相比,当比较到距离电极 1.5cm 内的活跃皮质较大区域(>5cm)时,会产生>50µV 的误差。最后,使用偶极子表示实际神经源时,源定位误差<5mm。

结论

单偶极子是表示单个神经元和小的活跃皮质区域的合适源模型,而多个偶极子则需要表示大的皮质区域。

意义

偶极子是 sEEG 的计算上可行且有效的源模型。

相似文献

1
Ideal current dipoles are appropriate source representations for simulating neurons for intracranial recordings.
Clin Neurophysiol. 2023 Jan;145:26-35. doi: 10.1016/j.clinph.2022.11.002. Epub 2022 Nov 9.
2
SEEG in 3D: Interictal Source Localization From Intracerebral Recordings.
Front Neurol. 2022 Feb 8;13:782880. doi: 10.3389/fneur.2022.782880. eCollection 2022.
3
Electrical Source Imaging of Somatosensory Evoked Potentials from Intracranial EEG Signals.
Brain Topogr. 2023 Nov;36(6):835-853. doi: 10.1007/s10548-023-00994-5. Epub 2023 Aug 29.
4
Evaluating dipolar source localization feasibility from intracerebral SEEG recordings.
Neuroimage. 2014 Sep;98:118-33. doi: 10.1016/j.neuroimage.2014.04.058. Epub 2014 May 2.
5
Comparison of performance of spherical and realistic head models in dipole localization from noisy EEG.
Med Eng Phys. 2002 Jul;24(6):403-18. doi: 10.1016/s1350-4533(02)00036-x.
6
A simple method for EEG guided transcranial electrical stimulation without models.
J Neural Eng. 2016 Jun;13(3):036022. doi: 10.1088/1741-2560/13/3/036022. Epub 2016 May 11.
7
On the estimation of the number of dipole sources in EEG source localization.
Clin Neurophysiol. 2005 Sep;116(9):2037-43. doi: 10.1016/j.clinph.2005.06.001.
8
Validating EEG source imaging using intracranial electrical stimulation.
Brain Commun. 2023 Feb 7;5(1):fcad023. doi: 10.1093/braincomms/fcad023. eCollection 2023.
9
A simulation study of the error in dipole source localization for EEG spikes with a realistic head model.
Clin Neurophysiol. 2003 Jun;114(6):1069-78. doi: 10.1016/s1388-2457(03)00064-6.
10
Dipole modeling of epileptic spikes can be accurate or misleading.
Epilepsia. 2005 Mar;46(3):397-408. doi: 10.1111/j.0013-9580.2005.31404.x.

引用本文的文献

2
3
Stereo-EEG Planning: Hitting the Target but Missing the Point?
Epilepsy Curr. 2024 May 9;24(4):254-255. doi: 10.1177/15357597241253417. eCollection 2024 Jul-Aug.
5
Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry.
Brain Stimul. 2023 Nov-Dec;16(6):1776-1791. doi: 10.1016/j.brs.2023.11.018. Epub 2023 Dec 6.
6
Optimization of patient-specific stereo-EEG recording sensitivity.
Brain Commun. 2023 Nov 2;5(6):fcad304. doi: 10.1093/braincomms/fcad304. eCollection 2023.
7
Comparison of EEG Source Localization Using Simplified and Anatomically Accurate Head Models in Younger and Older Adults.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2591-2602. doi: 10.1109/TNSRE.2023.3281356. Epub 2023 Jun 13.
8
Relative contributions of different neural sources to the EEG.
Neuroimage. 2023 Jul 15;275:120179. doi: 10.1016/j.neuroimage.2023.120179. Epub 2023 May 22.
9
iCanClean Improves Independent Component Analysis of Mobile Brain Imaging with EEG.
Sensors (Basel). 2023 Jan 13;23(2):928. doi: 10.3390/s23020928.

本文引用的文献

1
SEEG in 3D: Interictal Source Localization From Intracerebral Recordings.
Front Neurol. 2022 Feb 8;13:782880. doi: 10.3389/fneur.2022.782880. eCollection 2022.
2
Biophysically detailed forward modeling of the neural origin of EEG and MEG signals.
Neuroimage. 2021 Jan 15;225:117467. doi: 10.1016/j.neuroimage.2020.117467. Epub 2020 Oct 17.
3
Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia.
Clin Neurophysiol. 2020 Mar;131(3):734-743. doi: 10.1016/j.clinph.2019.12.408. Epub 2020 Jan 20.
4
Multimodal characterization of the human nucleus accumbens.
Neuroimage. 2019 Sep;198:137-149. doi: 10.1016/j.neuroimage.2019.05.019. Epub 2019 May 8.
5
Bayesian Electromagnetic Spatio-Temporal Imaging of Extended Sources Based on Matrix Factorization.
IEEE Trans Biomed Eng. 2019 Sep;66(9):2457-2469. doi: 10.1109/TBME.2018.2890291. Epub 2019 Jan 1.
6
A Finite Element Solution of the Forward Problem in EEG for Multipolar Sources.
IEEE Trans Neural Syst Rehabil Eng. 2019 Mar;27(3):368-377. doi: 10.1109/TNSRE.2018.2886638. Epub 2018 Dec 13.
7
Biophysically realistic neuron models for simulation of cortical stimulation.
J Neural Eng. 2018 Dec;15(6):066023. doi: 10.1088/1741-2552/aadbb1. Epub 2018 Aug 21.
8
Quantitative simulation of extracellular single unit recording from the surface of cortex.
J Neural Eng. 2018 Oct;15(5):056007. doi: 10.1088/1741-2552/aacdb8. Epub 2018 Jun 20.
10
Source localization of ictal epileptic activity based on high-density scalp EEG data.
Epilepsia. 2017 Jun;58(6):1027-1036. doi: 10.1111/epi.13749. Epub 2017 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验