Stadler Julia, Vogel Manja, Steudtner Robin, Drobot Björn, Kogiomtzidis Anna L, Weiss Martin, Walther Clemens
Institute of Radioecology and Radiation Protection, Leibniz University Hannover, 30419, Hannover, Germany.
VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstraße 400, 01328, Dresden, Germany; HZDR Innovation GmbH, Bautzner Landstraße 400, 01328, Dresden, Germany.
Chemosphere. 2023 Feb;313:137252. doi: 10.1016/j.chemosphere.2022.137252. Epub 2022 Nov 17.
A combination of biochemical preparation methods with microscopic, spectroscopic, and mass spectrometric analysis techniques as contemplating state of the art application, was used for direct visualization, localization, and chemical identification of europium in plants. This works illustrates the chemical journey of europium (Eu(III)) through winter rye (Secale cereale L.), providing insight into the possibilities of speciation for Rare Earth Elements (REE) and trivalent f-elements. Kinetic experiments of contaminated plants show a maximum europium concentration in Secale cereale L. after four days. Transport of the element through the vascular bundle was confirmed with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDS). For chemical speciation, plants were grown in a liquid nutrition medium, whereby Eu(III) species distribution could be measured by mass spectrometry and luminescence measurements. Both techniques confirm the occurrence of Eu malate species in the nutrition medium, and further analysis of the plant was performed. Luminescence results indicate a change in Eu(III) species distribution from root tip to plant leaves. Microscopic analysis show at least three different Eu(III) species with potential binding to organic and inorganic phosphate groups and a Eu(III) protein complex. With plant root extraction, further europium species could be identified by using Electrospray Ionization Mass Spectrometry (ESI MS). Complexation with malate, citrate, a combined malate-citrate ligand, and aspartate was confirmed mostly in a 1:1 stoichiometry (Eu:ligand). The combination of the used analytical techniques opens new possibilities in direct species analysis, especially regarding to the understanding of rare earth elements (REE) uptake in plants. This work provides a contribution in better understanding of plant mechanisms of the f-elements and their species uptake.
结合生化制备方法与微观、光谱和质谱分析技术(作为当前最先进的应用),用于直接可视化、定位和化学鉴定植物中的铕。这项工作展示了铕(Eu(III))在冬黑麦(Secale cereale L.)中的化学历程,深入了解了稀土元素(REE)和三价f元素的形态形成可能性。受污染植物的动力学实验表明,四天后冬黑麦中铕的浓度达到最大值。通过扫描电子显微镜(SEM)和能量色散X射线分析(EDS)证实了该元素通过维管束的运输。为了进行化学形态分析,将植物种植在液体营养培养基中,通过质谱和发光测量来测定Eu(III)物种的分布。这两种技术都证实了营养培养基中存在苹果酸铕物种,并对植物进行了进一步分析。发光结果表明Eu(III)物种从根尖到植物叶片的分布发生了变化。微观分析显示至少有三种不同的Eu(III)物种可能与有机和无机磷酸基团以及一种Eu(III)蛋白质复合物结合。通过植物根系提取,使用电喷雾电离质谱(ESI MS)可以鉴定出更多的铕物种。与苹果酸、柠檬酸、苹果酸 - 柠檬酸组合配体和天冬氨酸的络合大多以1:1化学计量比(Eu:配体)得到证实。所使用的分析技术的结合为直接物种分析开辟了新的可能性,特别是在理解植物对稀土元素(REE)的吸收方面。这项工作有助于更好地理解f元素在植物中的机制及其物种吸收。