Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St. 131, Tallahassee, FL, 32310, USA.
High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
Adv Healthc Mater. 2023 Jan;12(6):e2202511. doi: 10.1002/adhm.202202511. Epub 2022 Dec 4.
Auxetic materials are the materials that can display negative Poisson's ratio that describes the degree to which a material contracts (or expands) transversally when axially strained. Human stem cells sense the mechanical properties of the microenvironment, including material surface properties, stiffness, and Poisson's ratio. In this study, six different auxetic polyurethane (PU) foams with different elastic modulus (0.7-1.8 kPa) and Poisson's ratio (-0.1 to -0.5) are used to investigate lineage specification of human induced pluripotent stem cells (hiPSCs). The surfaces of the foams are modified with chitosan or heparin to enhance the adhesion and proliferation of hiPSCs. Then, the vascular and neural differentiation of hiPSCs are investigated on different foams with distinct elastic modulus and Poisson's ratio. With different auxetic foams, cells show differential adherent density and differentiation capacity. Chitosan and heparin surface functionalization promote the hindbrain and hippocampal markers, but not forebrain markers during neural patterning of hiPSCs. Properly surface engineered auxetic scaffolds can also promote vascular differentiation of hiPSCs. This study represents a versatile and multifunctional scaffold fabrication approach and can lead to a suitable system for establishing hiPSC culture models in applications of neurovascular disease modeling and drug screening.
超弹性材料是指能够表现出负泊松比的材料,泊松比描述的是材料在轴向应变时横向收缩(或扩张)的程度。人类干细胞感知微环境的力学特性,包括材料表面特性、硬度和泊松比。在这项研究中,使用了六种不同弹性模量(0.7-1.8 kPa)和泊松比(-0.1 至-0.5)的不同超弹性聚氨酯(PU)泡沫来研究人类诱导多能干细胞(hiPSCs)的谱系特化。泡沫的表面用壳聚糖或肝素进行修饰,以增强 hiPSCs 的黏附和增殖。然后,在具有不同弹性模量和泊松比的不同泡沫上研究 hiPSCs 的血管和神经分化。使用不同的超弹性泡沫,细胞表现出不同的黏附密度和分化能力。壳聚糖和肝素表面功能化促进了 hiPSCs 后脑和海马标记物的表达,但在神经模式形成过程中并不促进前脑标记物的表达。适当的表面工程超弹性支架还可以促进 hiPSCs 的血管分化。这项研究代表了一种通用且多功能的支架制造方法,可以为建立 hiPSC 培养模型提供合适的系统,用于神经血管疾病建模和药物筛选等应用。